气相色谱法研究配位化合物的热稳定性

XⅢ.普鲁士蓝化合物的热分解及

其加氢反应研究

牛均宁 忻新泉 陈汉文 戴安邦

(南京大学配位化学研究所)

张 毓 昌

(南京大学物理系)

普鲁士蓝化合物的热分解过程,可分为三个阶段:(1) 脱水;(2) Fe³⁺还原至 Fe²⁺;(3) C \equiv N⁻ 键的断裂。H₂ 气中的热分解由于发生了一系列的加氢反应,分 解产物及所对应的分解温度都不同于 He 气中的情况,其产物的种类增加,C \equiv N⁻ 键的断裂温度降低。普鲁士蓝化合物中,CN⁻呈典型的双端基配位,可看作是一种 双金属配位的活化模型,与CN⁻呈单端基配位的 K₈[Fe(CN)₆]相比,C \equiv N⁻ 键的 活化程度增加,不仅断裂温度降低,且能发生更深度的加氢反应。

关键词: 气相色谱 热分解 普鲁士蓝 加氢反应

许多加氢反应中,底物分子都含有多重键,例如 N₂、CO、CO₂、炔烃、烯烃、以及腈 类化合物。关于多重键的活化问题,人们已根据分子轨道理论,从配位催化的角度,提出了 不少活化模型,并致力于一些模型化合物的合成和研究。

Prussian blue (普鲁士蓝) 和 Turnbull's blue (滕氏蓝) 是经典的无机配合 物。前 者由Fe³⁺和[Fc(CN)₆]⁴⁻制得,后者由 Fe²⁺和 [Fe(CN)₆]³⁻得到,实际上二者具有相同 的组成和结构,是同一种化合物。普鲁士蓝根据含钾量的不同,又分为"溶解的普鲁士蓝" 和"不溶解的普鲁士蓝"两种,分别为KFe^{III} [Fe^{II}(CN)₆]和 Fe^{III} [Fe^{II}(CN)₆]₃⁽¹⁾。 **普鲁士**蓝化合物在氩气中的热分解,曾有人作过研究⁽²⁾,但只局限于以常规的TGA和DTA 法为主要手段,缺乏气相分解产物及其反应方面的信息,因而未能给出较完整、较全面的热 分解过程。氢气中的热分解研究,尚未见报道。本文以气相色 谱 检 测 气 相 分 解产 物,以 Mossbauer 谱和X射线衍射物相分析等手段分析固相分 解 产 物,对 KFe^{III} [Fe^{III}(CN)₆]• 2.3H₂O在He 气和 H₂ 气中的热分解,进行了研究。本文以及一系列类普鲁士蓝结构双金属 配合物的热分解的研究⁽³⁾,不仅在于弄清此类化合物的热分解机理,更重要的是以此类 结 构的化合物,作为一种理想的双金属配位活化模型,以C≡N⁻的加氢反应为探针, 来探 讨 双金属双端基配位对多重键的活化作用。文中还与 CN⁻ 呈单端基配位化合物的加氢反应⁽⁴⁾ 进行了比较,得到了很有意义的结果。

实 验 与 结 果

1. 样品的合成

所用药品均为A.R.级试剂。参照文献[5、6.1],分别将 FeCl。和 K.[Fe(CN)。]·3H2O 溶于水中,浓度各约为0.5M,按 Fe^{3+} 与[Fe(CN),]⁴⁻的摩尔比为1:1的量,在搅拌下将 FeCl。 溶液加到 K₄[Fe(CN)。]·3H₂O 溶液中去。生成的沉淀离心过滤,用蒸馏水洗涤数 次,直到用 AgNO。检验基本没有 CI⁻离子为止,最后用乙醇、乙醚各洗一次。在60~70°C 烘干后,置于干燥器中备用。

2. 分析结果

将样品溶于 EDTA 溶液中,然后稀释至适当浓度,用 JA1100 型 电感偶合等离子发 射 谱 仪测定金属含量。C、H、N 元素的含量由Perkin Elema 240C 型元素分析仪测定。分析结果 列于表1。

多1 样品的分析

lable I Analytical Data of Sample								
分子式 molecular	各元素的重量百分含量(<u>实测值) measured</u> (wt %) calculated (wt %)							
formula	Fe	K	С	Н	N			
KFe[Fc(CN) _s].	32.08	11.46	20.18	1.17	24.42			
2.3H2O	32,06	11.22	20.69	1.33	24.13			

3. 气相色谱追踪检测气相分解产物

仪器及反应装置见本系列工作第一报⁽⁷⁾,柱填料为Porapak QS和Chromosorb 103的 混合填料。

4. Mossbauer 谱的测定

根据热分解气相产物流出曲线(图2),按分解过程中的各阶段,分段选取各分解温度 下的固相分解产物,在H₂气或He气的保护气氛中蜡封制样。测谱仪器为 MS-79 型等加速 Mossbauer 谱仪和 D/H 转换精密函数发生器。在小速度范围内,采用锯齿波作参考信号。 放射源为⁵⁷Co(Rh),源强约40毫居里。利用 FH-419G 型多道分析器的 256 道记录数据。 室温下测谱,测量结果均按洛仑兹曲线进行最小二乘法拟合,所得结果列于表2,速度零点

as. Ha气氛中; bi Ha气氛中;

图1 KFeⅢ[FeⅡ(CN);]・2.3H2O 热 分解的气相产物流出曲线 (*a*)He气氛中 (*b*)H2气氛中 Fig.1 Gas products evolved during decomposition of

KFe^{III} (Fe^{III} (CN)6) · 2.3H2O (a)in helium; (b)in hydrogen

表 2 KFe 亚[Fe II (CN)6]-2.3H2O 在各分解温度下固相产物的室温:

Mössbauer 谱参数

Table 2 Mössbauer Parameters at Room Temperature for Solid Decomposed Products of KFell[Fe2(CN),]+2.3H2O at Various Temperatures during Decomposition

气氛	Т	<i>I.S.</i>	<i>Q</i> .S.	Wп	Hint	Area	标识
atmosphere	°C	mm/s	mm/s	mm/s	KOe	%	symbol
25	251)	-0.10	0.00	0.40	0.0	48	低 Fe II
	23	0.45	0.10	0.56	0.0	52	高Fe世
300 H2 620		-0.07	0.00	0.40	0.0	44	低 Fe II
	300	0.40	0.19	0.18	0.0	11	高 Fe Ⅲ
		1.20	1.53	0.52	0.0	45	高 Fe II
	620	0.00	0.00	0.32	331	65	a⊸⊦Fe
	020	0.18	0.00	.0.32	208	35	Fe3C
Ho	350	-0.09	0.00	0.38	0.0	43	低 Fe II
		1,13	1.58	0.50	0.0	57	高 Fe Ⅱ.
	650	0.18	0.00	0.34	209	100	Fe3C

1) 未分解样品、undecomposed sample

5. 射线衍射分析测定固相产物

仪器为XD-3A型X射线衍射仪,Cu靶,检测狭缝为0.3A, 扫描速度为4°/min。

Fig.2 Mossbauer spectra at room temperature of solid products of KFeIII(FeII(CN)) \cdot 2.3H₂O During decomposition (a) undecomposed (b) heated to 350 °C in hydrogen; (c)heated to 350 °C in helium_g

图3 KFe^I[Fe^I CN);]2.3H2O的固相分解产物的室温 Mossbauer谱 (*a*)He气中分解至650℃的固相产物;(*b*)H2气中分 解至620℃的相固产物。

Fig. 3 Mossbauer Spectra at room temperature of solid products of KFe^{II} (Fe^{III}(CN)₀) · 2.3¹/₂O afte⁻ decomposition (a) heated to 650°C in helium; (b) heated to 620°C in helium;

图4 KFe^I[Fe^I(CN)₆] · 2.3H2O 在 H2气中分解至 620 °C 时固相产物的 X 射线衍射图(Cu靶)

Fig.4 x---ray diffraction pattern of solid products of

KFe^{III}(Fe^{III}CN)e) · 2.3H₂O heated to 620°C in hydrogen

讨

论

自三十年代以来,有不少工作 研究了普鲁士蓝的结构(s^{-12}), 直到1977年,Buser等才测得普 鲁士蓝的单晶结构(12)。在 KFe^{II}[Fe^{II}(CN)₆]晶体中, CN⁻ 配体呈典型的双端基配位。 Fe(II)和Fe(II)分别与CN⁻ 的 碳端和氮端配位,处于碳原子和 氮原子构成的八面体空穴中,形 成了以Fe(II)—C=N—Fe(III) 为基元的聚合骨架结构,K⁺和 H₂O填充在骨架的空隙位置, 如图 5 所示。 无

图 1 为 KFe^{III} (CN)₈]·2.3H₂O 在两种不同气氛中热分解的气相产物流出曲 线。显然,H₂ 气中热分解的气相产物流出曲 线。显然,H₂ 气中热分解的气相产物较 He 气中要复杂得多,这是由于在H₂气中发 生了一系列的加氢反应而造成的。He 气中 热分解的气相产物只有三种:H₂O、(CN)₂ 和 N₂,而 H₂ 气中则 有 H₂O、(CN)₂、 HCN、N₂、NH₃和CH₄ 六种。就整个分 解过程来看,He 气中的热分解,根据气相 产物流出曲线分成三个分解 阶段,H₂ 气中 也有三个分解阶段与之对应。

(1) 脱水阶段: 普鲁士蓝及其类 似 物 都含有不定数目的结晶水和吸附水, 这些水

图5 KFe^{III}[Fe^{II}(CN)6]的晶体结构示意图 Fig.5 Diagram of crystal structure of KFe^{III} (Fe^{II}(CN)6)

分子一般都以填隙的方式,处于一 Fe^{II} — $C \equiv N$ — Fe^{II} —骨架结构的空隙位置,加热时首先脱出,

 $KFem[Fem(CN)_{\theta}] \cdot 2.3H_2O \rightarrow KFem[Fem(CN)_{\theta}] + 2.3H_2O \uparrow$

由于水分子的填隙位置是随机的,且所处环境大致相同,因此,图1上的脱水峰为平滑单峰。在脱水阶段,两种气氛中的情况大致相同,脱水还未完全,下一阶段的还原分解就已开始,两个阶段部分交迭在一起。

(2) Fe³⁺的 还原分解阶段:图2a是KFe^{II}[Fe^{II}(CN)₆]·2.3H₂O未分解前的Mossbauer 谱,结合表 2 可知,有两种状态的铁存在,一种为低自旋态的 Fe(II),一种 为 高 自 旋态的 Fe(II),二者分别与CN⁻的碳端和氮端呈六配位状态。从Mössbauer谱的 拟 合 峰面 积看,两种状态铁的比例大致相等。

对给定的 Mössbauer元素来说,在固定条件下观察到的四极 分裂(Q.S.)值变化,只能来自不同化合物中总电场梯度(在主轴系统中用 Vss表示)的变化。通常, Vss 主要有两方面的来源⁽¹⁸⁾:

(a)价电子贡献,即 Mössbauer 原子的价电子轨道中,非立方对称性的电子分布,用(*V***)*Val*表示;

(b)配体和点阵的贡献,即 Mossbauer 原子周围,非立方对称性分布的原子或离子中的电荷分布,用(*V***)L表示。

在未分解的KFe^{II}[Fe^{II}(CN)_e]中, Fe^{(II})和Fe^{(II})</sup>都是六配位,处于八面体场中,低自 旋态Fe^(II)(t_2 ⁰)和高自旋态Fe^(II)(t_2 ⁰, e_3 ⁰),分别具有全满或半满的 t_{22} 和 e_2 亚壳 层 电子 结构,其(V_{ss})Val都为零。从表2看,低自旋Fe^(II)的Q.S.为零,说明它有严格的正八面 体Oh 讨称性,(V_{ss})L也为零。而高自旋 Fe^(II)则呈现出较小的Q.S.值,说明它并不具备严 体的 Oh 对称性,而是发生了一定程度的畸变,从而(V_{ss})_L不再为零。 当 KFe^{II}[Fe^{II}(CN)_a]在 He 气中分解至 350°C 时, 固相产物中出 现了 高 自 旋 态 的 Fe^(II),而原来高自旋态的 Fe^(II)则 不 复 存 在(见图2c), 同 时 从 图 1a上 看,有(CN)_a放 出。说明在这一阶段中,与 CN⁻ 氮端配位的 Fe^(II)被还原 成 Fe^(II),并放出 (CN)_a 以 保 持电荷的平衡。同时,由于 (CN)_a 的放出, CN⁻ 配体减少,部分低自旋 Fe^(II)失去 了 与 CN⁻ 碳端配位的机会,而转入空穴位置或与氮端 配 位,成为 高 自 旋 态 的 Fe^(II)。这 与 Mossbauer 谱 的 拟合结果即高自旋 Fe^(II)组分多于低自旋 Fe^(II)组分是一致 的。从 高 自 Fe^(II)具有较大的 Q.S. 值看来,与 CN⁻ 氮端配位的 Fe^(II)也偏 离了严格的 Oh 对称性。另 外,高自旋态 Fe^(II)吸 收峰较宽,说明他周围研究的畸变程度并不是单一的,其中也包 括 有空隙位置的Fe^(II)存在。但是,这 些变 化并未引起各种高自旋态 Fe^(II)吸 收峰 的分离, **骨架**空隙位置中的 Fe^(II)和与CN⁻氮端配位的 Fe^(II),有大致相近的**I**.S.和Q.S.值⁽³⁷¹⁰⁾。 所以,无法作进一步解离谱的分析。根据以上分析,可以认为这一阶段的分解反应为

4

 $6KFe \blacksquare [Fe \blacksquare (CN)_{6}] \longrightarrow 3K_{2}Fe \blacksquare [Fe \blacksquare (CN)_{6}] + 2Fe_{a}^{\blacksquare} [Fe \blacksquare (CN)_{6}] + 3(CN)_{2}$ (2)

其中, $K_2 Fe^{I}[Fe^{I}(CN)_6]$ 和 $Fe_2^{I}[Fe(CN)_6]$ 并不表示有两种分离的物相存在,实际上 二者是混合的。

从图 1b 可以看到, H₂ 气中热分解时, 由于 H₂ 的存在, (CN)₂能与 H₂ 发生反应, 生成相应的加氢产物HCN⁽¹⁴⁾。

$$(CN)_2 + H_2 \longrightarrow 2HCN \tag{3}$$

所以, H₂气中的这一分解阶段,反应(2)、(3) 是同时发生的。H₂气中热解至300°C 时的固相产物,其 Mössbauer 谱仍显示出有少量的高自旋Fe(\square)存在(图2b),是由于反应(2)还未进行完全,就已开始了下一阶段的分解。

(3) C≡N⁻ 键的断裂分解阶段: He 气中的这一分解阶段,情况比较简单,气相产物 有 (CN)₂ 和 N₂,固产物为Fe₃C、C 和 KCN (参见图 1a、3a、4)。N₂的生成,预示着 C≡N⁻键发生了断裂,反应可表示如下:

 $3K_2 \operatorname{Fe}^{II} [\operatorname{Fe}^{II} [(CN)_{\mathfrak{g}} \longrightarrow 6KCN + 2\operatorname{Fe}^{II}_2 \operatorname{Fe}^{II} (CN)_{\mathfrak{g}}]$ (4)

 $Fe^{\Pi} [Fe^{\Pi} (CN)_{s}] \longrightarrow Fe_{s}C + 3C + 2N_{s} + (CN)_{s}$ (5)

$$\operatorname{Fe}_{2}^{\mathrm{II}} [\operatorname{Fe}_{2} (\operatorname{CN})_{\mathfrak{g}}] \longrightarrow \operatorname{Fe}_{3} C + 5C + 3N_{2}$$

$$\tag{6}$$

对比图 1 的 a 和 b,可以看到在该阶段的分解反应中,H₂ 气氛与 He 气氛的情况差别 很大,不仅气相产物有所不同,而且由于相应的加氢反应发生,使得 H₂ 求中 C \equiv N⁻ 健的断 裂温度大大降低。H₂ 气中的这一阶段,是整个分解过程中最复杂的阶段,也是分解加氢 反 应的高潮。它由许多反应构成,生成的分解产物也相当复杂。气相产物中有(CN)₂、HCN、N₂、NH₃和 CH₄(见图 1b),固相产物为 α —Fe、Fe₃C、C 和 KCN(见图 3b、4)。 因此,KFe \equiv [Fe \exists (CN)₆]在 H₂ 气中的这一分解阶段,除了上述反应外,还有下列反应同 时发生。

$$Fe_{2}^{II} [FeII (CN)_{6} + 9H_{2} \longrightarrow Fe_{3}C + 5C + 6NH_{3}$$
(7)

(3)

$$Fe_{2}^{\Pi} [Fe_{\alpha}(CN)_{6}] + 11H_{2} \longrightarrow 3Fe + 5C + CH_{4} + 6NH_{3}$$
(8)

$$Fe_{2}^{\Pi} [Fe^{\Pi}(CN)_{e}] \longrightarrow 3Fe + 3(CN)_{2}$$
(9)

$$(CN)_{2} + H_{2} \longrightarrow 2HCN$$

反应(7)、(8)的发生,使得NH₃与CH₄并不是以1:1 摩 尔同 时 放 出,从图 1b 可见,放 NH₃峰比放 CH₄峰要高。此外,从图上可知,在出现放 NH₃峰的温度以后,仍不断有 CH₄放出,这应归于碳的加氢反应

$$C + 2H_2 \longrightarrow CH_4$$
 (10)

2. C≡N⁻體的活化

CN⁻与CO、N₂等小分子是等电子体,具有相似的电子结构和轨道能级次序,因此,关 于C≡N⁻键活化模型的研究,对CO、N₂等小分子的活化,也能提供有意义的信息。CN⁻作 为配体,碳、氮两端都可参与配位。但在K₃[Fe(CN)₆]和K₄[Fe(CN)₆]晶体中,只有分 立的八面体结构基元,CN⁻呈单端基配位⁽¹⁵⁾,而在普鲁士蓝化合物中,CN⁻的碳、氮两端 则同时参加配位,铁离子之间通过呈双端基配位的桥式CN⁻聚合在一起⁽¹⁾。

在分立的 [Fe(CN)₆]ⁿ 配离子中,铁离子通过与 CN⁻ 碳端形成的 $\sigma_{L \rightarrow Fe} n \pi_{Fe \rightarrow L}$ 配 键,对 C = N⁻ 的三键起削弱作用。而在普鲁士蓝化合物中,CN⁻ 呈双端配位,氦端与铁离 子的配位也近似呈八面体,轨道之间的相互作用,可近似认为与碳端配位的情况相似。CN⁻ 氦端与铁形成的 $\sigma - \pi$ 配键,也能削弱C = N⁻ 三键。因此,在普鲁士蓝化合物中,C-N⁻ 三 键较单端配位时更加削弱。对照KFe^{II}[Fe^{II}(CN)₆]·2.3H₂O的热分解与 K₃[Fe(CN)₆]的 热分解⁽⁴⁾ (参见表 3),能够完全证实这一推论。在 He 气中热分解时,KFe^{II}[Fe^{II} (CN)₆]·2.3H₂O的C = N⁻ 键断裂放 N₂温度,较 K₃[Fe(CN)₆] 为低;在H₂气中热分解 时,KFe^{II}[Fe^{II}(CN)₆]·2.3H₂O的 C = N⁻键不仅断裂温度降低,而且能够发生更深度的 加氢反应,K₃[Fe(CN)₆]的加氢产物为 CH₃ NH₂,C = N⁻键部分断裂,而KFe^{II}[Fe^{II} (CN)₆]·2.3H₂O 的加氢产物为NH₃和CH₄,C = N⁻键完全断裂,其C = N⁻键的断裂加氢 以应则氢端加氢为主,加氢机理的讨论见文献[3]。

Table 3 Thermal Decomposition of K[Fe(CN),]·2.3H ₂ O Compared with K ₃ [Fe(CN),]							
分解气氛 decomp. 分解气氛 化合物 compound	He	H ₂					
.K ₃ [Fe(CN) ₆]	放 № 峰温 600°C	CN 的加氢产物 CH ₃ NH ₂					
KFe[Fe(CN),]•2.3H2O	放 № 峰温 560°C	CN ⁻ 的加 氢产物 , NH ₃ ,CH ₄					

表 3 KFe[Fe(CN)₆]+2.3H₂0 与 K₃[Fe(CN)₆] 的热分解比较

- [1] Buser, H.J., Schwarzenbach, D., Petter, W. and Ludi, A., Inorg Chem., 16(11), 2704(1977).
- [2] Seifer, G.B., Russ. J. Inorg. Chem., 5, 33(1960).
- [3]牛均宁,研究生论文,南京大学(1984)。

3

- [4] 汪信, 忻新泉, 陈汉文, 戴安邦, 张毓昌, 科学通报, 印刷中。
- [5] Pekarek, V. and Vesely, V., Analytist, 19, 1245(1972).
- [6] Ayers, J.B. and Waggoner, W.H., J. Inorg. Nucl. Chem., 33, 721(1971).
- [7] 忻新泉,汪信,张雪琴,戴安邦,化学学报,12,1111(1982).
- [8] Keggin, J.F. and Miles, F.D., Nature, 137, 577 (1936).
- [9] Duncan, J.F. and Wigly, P.W.R., J. Chem. Soc., 1120 (1963).
- [10] Jr. Bonnette, A.K. and Allen, J.F., Inorg. Chcm., 10, 1613(1971).
- [11] Ludi, A. and Güdel, H.U., Structure and Bonding, 14, 1(1973).
- [12] Ludi, A., Güdel, H.U. and Rüegg, M., Inorg. Chem.,9, 2224(197).
- [13] U. 贡泽尔编,徐英庭译,穆斯堡尔谱学,科学出版社,北京,66页,69页 (1979)。
- [14] Brotherton, T.K. and Lynn, J.W., Chem. Rev., 69, 341 (1959).
- [15] Tuliberg, A. and Vannerberg, N.-G., Acta Chem. Scand., A28, 551 (1974).

STUDIES ON THERMAL STABILITIES OF COORDINATION COMPOUNDS BY GAS CHROMATOGRAPHY

X III. THERMAL DECOMPOSITION AND HYDROGENATION REACTIONS

OF PRUSSIAN BLUE

Niu Junning Xin Xinquan Chen Hanwen Dai Anbang (Coordination Chemistry Institute, Nanjing University)

Zhang Yuchang

(Physics Department, Nanjing University)

Thermal decomposition process of Prussian blue may be divided into three steps: (1) dehydration, (2) reduction of Fe^{3+} to Fe^{2+} , and (3) rupture of the $C \equiv N^-$ triple bond. The species of decomposition products and the temperature corresponding to forming these products in hydrogen are different from those in helium, since a series of hydrogenation reactions take place in the former case, the species of decomposition products being more and the temperature at which the $C \equiv N^-$ triple bond breaks off being much lower. Prussian blue may be considered as a activation model of bimetal coordination since CN^- acts as a typical biterminal ligand in it. In Prussian blue, the degree of activation of CN^- is higher, the temperature at which the $C \equiv N^-$ triple bond breaks off lower and the degree of hydrogenation of CN^- higher, in comparision with $K_3[Fe(CN)_6]$ in which the CN^- acts as a monoterminal lignd

Keywords gas chromatography thermal decomposition prussian blue hydrogenation