钨的双氨配合物与碘代三甲基硅烷的 反应——从配位氮分子形成 $N-S_i$ 键

金斗满

(河南化学研究所)

干鲷真信 内田安三

(日本东京大学工学部)

本文首次报道了配位氯分子与碘代三甲基硅烷反应形成新的N-Si 键的结 果。钨的双氨配合物 cis-[W(N2)2(PMe2ph)4]与 MeaSil 在 50°C下反应可得到 [WI(N2SiMe3)(PMe2ph),], 又可进一步与 HI 反应而转化为[WI2(N2HSiMe3) (PMe2ph)3]。用X-射线结构分析法确定了后一种配合物的分子结构。结果表明。 Me_sSi —基团结合于金属的 β —位氨原子上。

关键词: 钨 双复配合物 碘代三甲基硅烷

关于双氯配合物中配位氯分子的反应性,曾进行过广泛的研究。但这些研究大都集中于 少。许多研究结果表明,配位氮分子中的端基氮原子比直接与金属原子相结合的内部氮原子 具有更负的电荷,故可受质子和路易斯酸等的亲电进攻,而与金属原子相结合的氮原子则可 受亲核进攻(2):

> $M \leftarrow N \equiv N \leftarrow E$ E: 亲电试剂 Nu:亲核试剂

另一方面,Shiina 等人曾报道,在一些过渡金属卤化物例如 CrCl。的存在 下,N,分 子可与 MeaSiC1、Li 反应生成叁(三甲基硅烷基) 胺 N[Si(CHa)a]a⁽³⁾。然而此 反应的 机理至今仍未搞清楚。根据 MesSi C1 中的 MesSi-基团系较好的亲电试剂,可以推测 双氮 配合物中配位氯分子的端基氯原子与之相作用生成 N-Si 键。本文研究了钨的双 氯 配 合物 cis--[W(N₂)₂ (PMe₂ ph),]与 Me₈SiI 的反应,得到了含有N-Si 键的新型配合 物晶体,并 用X—射线结构分析证实了 Me_sSi—基团结合于配位氦分子的端基(β —)氦原子上。

验 实

1. 一般方法

所有合成及反应实验均在纯 N₂ 气氛中进行。所用溶剂均经常规法提纯、干燥并在 N₂气 本文于 1985 年 6 月 20 日收到。

学

无

下进行蒸馏。将所生成的配合物进行重结晶时,所用溶剂进一步采用 trap-trap 技术 纯化。 cis--[W(N₂)₂(PMe₂ph),]和 trans--[W(N₂)₂(dppe)(PMe₂ph)₂]是根据文献所述方法 合成制备的。用 Hitachi 215 型分光光度计测得红外吸收光谱,用 JEOL GX-400(400Hz) 测得 NMR 谱。

2. 三甲基碘代硅烷 Mes Sil 的合成

按照文献所述方法⁽⁴⁾,将 2.8克(0.11mole)铝粉和 8.1克(0.1mole)六甲基二硅烷放入 烧瓶中, 通入 N。气。将此混合物进行搅拌,并在油浴上 加 热 至 60°C, 缓慢加入 25.4克 (0.1mole)碘。将浴温升至约 140°C, 使混合物迥流 1.5 小时。拆卸迥流冷凝管,装 上常 压蒸馏装置。浴温徐徐升至 140°C—210°C, 收集无色透明产物 (b.p.106—109°C)。

3. cis--[W(N₂)₂(PMe₂ph)₄]和 Me₃Sil 的反应

(I) and (I)

将 cis-[W(N₂)₂ (PMe₂ph)₄](约0.45mmole) 悬浮 于苯(10ml)中,加入过量 (约10倍)的 Me₃Sil。将此混合物于 50°C 下搅拌 24 小时,得到暗红色溶液。抽真 空除 去溶剂。将剩余的粘稠状固体重新溶于苯中,过滤。用 trap-trap 技术将已烷加于滤液中, 借助溶剂扩散得到深红色结晶,为[WI₂(N₂HSiMe₃)(PMe₂ph)₄](I)。如把上 述 暗 红 色溶液进行浓缩后再加入已烷,则除了(I)之外,还可得到黄色的结晶,为[WI(NNSiMe₃) (PMe₂ph)₄](I),其收率分别为 16%(I)和 42%(I)。配合物(I)和(I)的元 素分析及红外光谱数据列于表 1。

	found(calcd.)(%)			IR(cm ⁻¹)			
	с	11	N	1	۷NN	δC[1- (Si)	vNSi
ĊD	33.93	4,79	2.85	26.20	1355	1109 12:0	840
	(33,98)	(4.55)	(2,93)	(26,59)		1254	
¢D	43.66	5.95	2.82	13.14	1370		873
	(43,58)	(5,55)	(2,90)	(13,16)		1246	1246

第1 配合物(U)和(I)的元素分析及光谱数据。 Table 1 - ...mentary Analysis and Spectra Data of Coordination Compounds

用相同的方法,将 $n_{n_{3}}$ 世 可以得到 类似(1)的配合物。该配合物的红外光谱数 据为 $\nu(N_{2})$ 1365cm⁻¹, δ CH₃(Si) 1410cm⁻¹, 1254cm⁻¹ 和 γ (N—Si)874cm⁻¹。

4. 晶体结构分析

将上述深红色配合物(1)晶体在**氮**气下熔封于毛细玻管中进行测定。初步薄膜数据表 明该晶体属单斜对称晶系。晶胞参数是在自动四圆衍射仪(Regaku)上根据24.8°<20< 36.1°中40个衍射斑(手动)中心的角度值再用最小二乘法计算的。结果为: a = 17.418(4)Å, $\delta = 18.031(5)$ Å, c = 11.370(2)Å, $\beta = 91.61(2)$ °, $D_C = 1.78g/cm^3$, $\mu_{Mo} = 53.65cm^{-1}$ 。 衍射强度数据系在 Regaku 四圆衍射仪上收集的。采用 LiF 单色化的 MoKa射线($\lambda =$ 0.71069Å)。扫描方式为 2θ---W, 扫描速度为 2°/min(2θ),扫描范围为 1.0+0.45tanθ。用 F0>3α(F0)的 5119 个衍射数据进行了连续结构确定及 Lorenz因子、偏振因子和经验吸收 的校正。

晶体结构借助于方便的Patterson 合成 (定域于钨原子) 解 出。然 后 用 Fourier 合成 确定所有非氢原子的位置。用全矩阵最小二乘法修正位置参数和温度因 子。最 终 R 指 数 为 0.11。键长及键角数据列于 表 2。

÷

2

٨

·9-

表 2 健长 (Å) 与健角 (应)

			a second in the second s
A = I(p)	2.848(2)	W - N(1)	1.768(17)
w = L(2)	2,902(2)	N(I) = N(2)	1.322(27)
W = P(D)	2.495(8)	N(2) = Si	1.751(22)
₩ P(2)	2,461(7)	$S_1 - C(1)$	1.874(34)
W P(3)	2,520(7)	Si - C(2)	1.878(41)
P(1) = C(11)	1.\$72(10)	Si - C(3)	1.897(36)
₽(1) C(12)	1.905(35)	P(2) - C(23)	1.\$19(25)
P(1) C(13)	1.857(25)	P(3) - G(31)	1.854(32)
P(2) C(21)	1.864(25)	P(3) ~ C(32)	1.881(41)
P(2) C(22)	1.852(27)	P(3) - C(33)	1.852(27)
I(1) + W - I(1)	85.8(1)	W = N(1) - N(2)	173.0(16)
I(1) - W - P(1)	84.3(2)	N(1) - N(2) - Si	128.9(16)
I(1) = W - P(2)	161.1(2)	N(2) - Si - C(1)	103.8(16)
1(1) W - P(3)	83.1(2)	N(2) - Si - C(2)	110.1(15)
I(2) = W - P(1)	93.0(2)	N(2) - Si - C(3)	106.8(13)
I(2) - W - P(2)	78.4(2)	C(2) - Si - C(2)	109.0(16)
I(2) - W - P(3)	88.1(2)	C(1) - Si - C(3)	118.1(15)
$N(\mathbf{I}) = W - I(\mathbf{I})$	105.1(7)	C(2) - Si - C(3)	108.8(17)
$\nabla (1) = W - I(2)$	168.4(7)	W - P(2) - C(21)	118.1(8)
N(I) + W = P(I)	92.1(6)	W - P(2) - C(22)	121.6(9)
$N(\mathbf{I}) = W = P(2)$	9 0.8 (6)	W = F(2) = C(23)	112.2(8)
N(1) + W + P(3)	89.4(6)	W = P(3) = C(31)	116.0(10)
W = P(1) + C(11)	113.7(10)	W' = P(3) = C(82)	108.7(13)
W = P(f) = C(12)	117.1(10)	W = P(3) = C(33)	122.9(9)
W = P(D) = C(D)	120.6(8)		_

Table 2 Bond Lengths (A) and Bond Angles (deg.)

结果与讨论

现已发现,大多数过渡金属(除铪 Hf 和锝 Tc 外)的双氮配合物均已用若干方法相继获得。在这些双氮配合物中,氮分子配位体的键合形式不外有如下五种,其中最常见的是端基(end—on)配位型(I)。

Hoffman 等从量子化学和结构化学理论的观点出发,研究了双氮配合物的稳定构型问题。结果表明,除若干种双氮配合物之外,一般端基配位(end—on)比例基配位(Side—on) 更为有利⁽⁶⁾。

关于端基配位双氮配合物M--N--N的电荷分布的研究表明,末端氮原子更负于内部氮

<u>158</u> 无 机 化 学 <u>1985</u> 年 原子。因此,双氮配位体中与金属直接相连的氮原子易受亲核攻击,而末端氮原子则易受亲 电攻击⁽⁶⁻⁸⁾。

端基配位型的末端氮原子具有弱碱性^(*),可与质子酸如 HX(X=卤素)及 路易斯酸如 A1R₃(R=烷基)相作用形成新的加合物⁽¹⁰⁻¹²⁾。例如

$$cis - [M(N_2)_2 (PMe_2 ph)_4] \xrightarrow{HX} [MX_2 (NNH_2) (PMe_2 ph)_3]$$

$$cis - [M(N_2)_2 (PMe_2 ph)_4] \xrightarrow{AlEt_3} [M(N_2 AlEt_3)_2 (PMe_2 ph)_4]$$

(M = Mo i W)

同样,双氮配合物中配位氮分子可与酰卤或芳酰 卤 如 RCOC1 作 用 形 成 碳 氮C--N 健(13-15),例如

$$trans = [M(N_2)_2 (dppe)_2] \xrightarrow{\text{IXA}} [MX (NNR) (dppe)_2]$$
$$\xrightarrow{\text{HX}} [MX (N_2 HR) (dppe)_2]X$$

此反应首先是从双氮配合物解离出 1 个氮分子的反应作为其速率控制步骤而开始的。然后卤 代烃 RX 加成而形成不稳定的中间体即 $[M(N_2)(RX)(dppe)_2]$ 。接着碳一卤键发生均解, 所生成的有机自由基进攻末端氮原子,最后形成烷基化联氮配合物(alkyldiazenido coordination compounds)。

同由配位氮分子形成碳一氮键一样,我们发现,将双氮配 合物 cis—[W(N₂)₂(PMe₂ ph)₄]与三甲基碘代硅烷 Me₃Sil 在苯中反应,得到了含有氮一硅键的新的配合物。将上述 钨的双氮配合物悬浮于苯中,加入 Me₃Sil,在 50°C下搅拌 24 小时,将真空干燥的 反应 物再置于苯—己烷中重结晶,便得到深红色配合物(II)。若向反应液中加入三乙 基 胺以 除去过量的 Me₃Sil,并经浓缩后加入己烷,则得到黄色配合物(I)。又将配合物(I) 与 1 倍摩尔的 HC1 气反应,可得到一种类似(I)的配合物。这些结果表明,配合物(I) 是由配合物(I)与 HI(从 Me₃Sil 和体系中微量水作用而生成)反应而形成的。元素 分 析的结果表明,配合物(I)与含有 Si—N 键的 diazenido 配合物相一致。配合 物(I) 的红外吸收光谱数据指出,1570cm⁻¹处的强峰归属于 ν(N₂),873cm⁻¹处的峰 归属 于 ν (Si—N)。配合物(I)的分析数据同样也是令人满意的,除在 1355cm⁻¹处有归属于 ν(N₂) 的强峰和 840cm⁻¹ 处有 ν(Si—N)的特征峰之外,3250cm⁻¹ 处有归属 于 ν(N—H)的 吸 **收峰。配合物(Ⅱ)**的¹H—NMR 谱表明, 2.13 和-0.02ppm 的两个单峰可分別归属于N ---H和 Si—CH₃ 的质子。

根据上述结果,我们认为 c is—[W (N₂)₂ (PMe₂ ph)₄]与 Me₃Sil 的反应可按如下 方式 进行。

 $cis = [W(N_2)_2(PMe_2ph)_4] + Me_3Sil = [WI(N_2SiMe_3)(PMe_2ph)_4] (I)$

(I) +HI \rightarrow [WI₂ (N₂HSiMe₃) (PMe₂ph)₃] (II) + [HPMe₂ph] I

前已述及中心金属的β-氮原子比内部的α-氦原子具有更负的电荷,可以接受亲电攻击。Me₃SiI中的Me₃Si-基可作为亲电试剂进攻末端氦原子而形成W-N=N-Si 型配合物

对上述配合物(II)的分子结 构,用X—射线晶体结构分析的方法 得到了确认。如图1所示。可以看 出,该配合物属八面体构型,其中 $-N=N-SiMe_3$ 配位体和碘阴离子 处于反位。键长及键角数据列于表 2。W—N—N键基本上是线性的; W—N和N—N键的键长分别为1.77(2) 和1.32(3)Å,它同[WBr(N₂HMe) (dppe)₂]Br⁽¹⁰)</sup>配合物相似;N—N —Si键的键角为126.6(17)°,略大 $+[WBr(N_2HMe)(dppe)_2]Br中N$ —N—C的键角(121°),这可能是 由庞大结构的Me₃Si基团的空间效应 所引起的。

图1 [WI2(N2HSiMe3)(PMe2ph)3] 的结构示意图

多考 文献

- [1] Jin Douman, Uchide, Y., Hidai, M., etal; Chem. Lett., 465 (1983).
- [2] Chatt, J., Dilworth, J.R. and Richards, R.L., Chem. Rev., 78, 589 (1978).
- [3] Shiina, K., J. Am. Chem. Soc., 94, 9266 (1972).
- [4] Jung, M.E. and Lyster, M.A., Organic Syntheses, 59, P-35.
- [5] Hoffman, R.H., Chen, M.M.-L. and Thorn, D.L., Inorg. Chem. 16, 503 (1977).
- [6] Leigh, G.J., Murrell, J.N., Bremser, W. and Proctor, W.G., Chem. Commun., 1661 (1970).
- [7] Brant, P. and Feltham, R.P., J.Less-Common Met., 54, 81 (1977).
- [8] Anderson, A.B. and Hoffman, R.H., J. Chem. Phys., 61, 4545 (1974).
- [9] Chatt, J., Dilworth, J.R., Leigh, G.J. and Rechards, R.L., Chem. Commun., 534 (1970).

无

[10] Chatt, J., Crabtree, R.H. and Richards, R.L., Chem. Commun., 534 (1970).

学

- [11] Chatt, J., Crabtree, R.H., Jeffery, E.A. and Richards, R.L., J. Chem. Soc., Dalton Trans., 1167 (1973).
- [12]Aresta, M., Cazze. Chim. Ital., 102, 781 (1972).
- [13] Tatsumi, T., Hidai, M. and Uchida, Y., Inorg. Chem., 14, 2530 (1975).
- [14]Diamantis, A.A., Chatt, J., Heath, G.A., Hooper, N.E. and Leigh, G.J., J.Chem.Soc., Dalton Trans., 688 (1977).
- [15]Sato, M., Kodama, T., Hidai, M. and Uchida, Y., J. Organometal. Chem., 152, 239 (1978).
- [16] Chatt, J., Head, R.A., Leigh, G.J. and Pickett, C.J., J. Chem. Soc., Dalton Trans., 1638 (1978).
- [17] Chatt, J., Hussian. W., Leigh, G.J., Neukomm, H., Pickett, C.J. and Rankin, D.A., J. Chem. Soc., Chem. Commun., 1024 (1980).
- [18] Chatt, J., Leigh, G.J., Neukomm, H., Pickett, C.J. and Stanley, D.R., J. Chem. Soc., Dalton Trans., 121 (1980).
- [19]March, F.C., Mason, R. and Thomas, K.M., J. Organometal. Chem., 96, C43 (1975).

REACTIONS OF TUNGSTEN DINITROGEN COORDINATION COMPOUNDS WITH IODOTRIMETHYLSILANE—FORMATION OF SI—N BOND FROM LIGATING DINITROGEN

Jin Douman

(Henan Institute of Chemistry) Masanobu Hidai Yasuzo Uchida (University of Tokyo, Japan)

The formation of Si-N bond from ligating dinitrogen of tungsten dinitrogen coordination compound is reported for the first time. The dinitrogen coordination compound $cis-[W(N_2)_2(PMe_2ph)_4]$ reacts with Me₃SiI at 50°C to give [WI(N_2SiMe_3)(PMe_2ph)_4], which is further converted into [WI₂(N₂HSi-Me₃)(PMe₂ph)₃] by treatment with HI. The molecular structure of the latter coordination compound has been determined by X-ray crystallographic analysis, which clearly shows the Me₃Si-group bonded to the β -position from the metal.

Keywords tungsten dinitrogen coordination compound iodotrimethylsilane