研究简报

四元体系Li₂O-MgO-B₂O₃-H₂O在40°C时 溶解度的研究*

郭志箴 陈佩珩 陈运生

(西北大学化学系,西安)

我国柴达木盐湖近期研究表明。新类型盐湖卤水可以近似地的看 作 是 天 然 的(Li)、Na⁺、K⁺、Mg² + Cl⁻、SO₄² - H₂O的多元水盐体系。新类型硼酸盐卤水经日晒蒸发析盐后,得到的氯化镁饱和卤水中钠和钾的含量甚少,可以被看作是Li⁺、Mg² + Cl⁻、SO₄ +、B₄O₇ - H₂O 五 元水盐体系。研究它,不仅可以丰富水盐溶液化学、 锂盐化学和硼酸盐化学,而且还可以为开发盐湖资源和卤水的综合利用提供有 益 的 相 图 依 据。 Li₂O - MgO - B₂O₃ - H₂O四元体系就是该体系的一部分。 在构成四元体系的三个三元体系中MgO - B₂O₃ - H₂OC¹)在25°C、35°C、45°C、70°C、83°C;Li₂O - B₂O₃ - H₂O(2²) 在10°C、20°C、30°C、40°C、60°C、80°C、100°C时的溶度均已有报导,而Li₂O - MgO - H₂O体系尚未见报导。 我们测定了 MgO - B₂O₃ - H₂O、Li₂O - MgO - H₂O 并重复测定了 Li₂O - B₂O₃ - H₂O 体系在 40°C时的几个三相无变点 e₂、e₄、e₆、e₈和 e₁、e₃、e₅、e₇,完成了 Li₂O - MgO - B₂O₃ - H₂O 四元体系在 40°C时的溶解度的测定。

实验部分

试剂:

 MgO A.R. 北京化工厂

 H₃BO₃ A.R. 西安化学试剂厂

LiOH•H₂O 西安化学试剂厂

Li₂B₄O₇ A.R. 北京化工厂

LiBO2·2H2O 西安化学试剂厂

仪器: 天平、砝码、温度计、容量仪器均经校正, 偏光显微镜 Polmi A。 恒温槽温度涨落不大于±0.05°C

分析方法: 硼采用甘露醇法⁽⁴⁾、锂、镁在强碱性溶液中进行分离后,镁用 EDTA 配位滴定,锂用高碘酸钾容量法,固相用偏光镜检定。^(5,6)

四元体系的配样系采用单变法,例如: 以 MgO - B₂O₃ - H₂O 三元体系中的一个 三 相 无变点为基础,向其中逐次加入第四种组份,直至在偏光镜下观察到第三种固相出现为止,如此即可配出一条单变线上一系列试样。其它单变线上的试样配法同此。将试样置于40°C的

本文于1985年2月18日收到。

中国科学院科学基金资助课题。

^{*} 杨霖、陈菊香、梁文忠、张斌昌、王方修、陈忠参加了部分实验工作。

表 1 四元体系 Li₂O-MgO-B₂O₃-H₂O 在 40°C 时的溶度
Table 1 Solubility in the system Li₂O-MgO-B₂O₃-H₂O at 40°C

无

NO.	液 相 组 成 liguid—phase composition								
	wt%			mol/(MgO +Li ₂ O+R ₂ O ₃ =100mol)				B ₂ O ₃	平衡固相 equilibrium
	MgO	Li ₂ O	B2O3	MgO	Li ₂ O	B ₂ O ₃	H ₂ Ox 10 ³	B ₂ O ₃ +Li ₂ O	solid-phase
e2	0.53		7.71	10.53		89.43	4.110	100.00	
2	0.42	0.06	7.58	8.61	1.60	89.79	4.202	100.00	A+G
3	0.36	0.17	8.11	6.81	4.34	88.84	3.867	95.34	A+G
4	0.34	0.22	8.15	6.37	5.48	88.15	3.813	94.15	A+G
5	0.34	0.46	10,39	4.85	8.83	86.32	2.848	90.72	A+G
6	0.23	0.90	15.51	2.44	13.12	84.44	2.016	86.55	A+G
e1		1.36	15.92		13.59	83.44	1.674	83.41	A + B
*E1	0.22	1.53	18.72	1.68	15.74	82.57	1.356	83,99	A+G+B
es		1.64	17,59		17,81	82,19	1.457	82.19	B+C
$*E_2$	0.19	0.96	10.69	2.53	17.88	80.64	2,570	82.73	G+B+C
e4	0.29		2.86	14.98		85.02	11,13	100.00	G+H
12	0.20	0.28	4.69	6.09	11.49	82.43	6.441	87.77	G+H
13	0.17	0.28	4.45	5.45	12.01	82.52	6.809	87.30	G+H
14	0.26	0.45	6.35	4.65	13.60	81.74	4.576	85.70	G+H
15	0.23	0.56	7.04	4.62	14.84	80.55	4.071	84.49	G+H
*E3	0.10	0.87	8.90	3.06	17.98	78.95	3.086	81.45	H+C+G
17	0,21	0.99	8.90	3.08	19.93	77.00	3.002	79.52	H+C
18	0.12	1.02	8.24	3.68	21.55	74.59	3.253	77.58	H+C
19	0.18	1.81	8,25	2.44	32.98	64.59	2.174	66.20	H+C
20	0.19	2.04	7.75	2.60	37.14	60.28	2.715	.61.88	H+C
ев		2.16	5.16		49.32	50.68	3.513	50.68	C+D
*E4	0.08	3.07	5.64	1.10	55,22	43.68	2.725	44.16	H+C+
23	0.05	3.66	5.70	0.60	59.29	40.11	2.432	40.37	C+D
e 6	0.07		0.22	37.22		62.78	113.0	100.00	H+I
25	0.12	0.04	0.54	24.8	10.91	64.28	45.64	85.49	H+J
26	0.10	0.05	0.55	9.42	26.88	63.69	45.71	70.32	H+J
27	0.08	0.38	1.59	5.55	34.11	60.34	14.48	63.89	H+J
28	0.07	0.61	1.89	3.26	41.54	55.19	10.97	57.06	H+J
*E5	0.15	4.22	5,32	1.72	63.76	34.50	2.264	35.10	H+D+J
30	0.05	3.05	2.44	0.92	73.75	25.33	3.787	25.56	D+J
31	0.05	3.66	2.06	0.75	79.88	19.37	3.414	19,52	D+1
e7		7.12	3.36		87.27	12.73	1.826	12.72	D+F
*E6	0.05	7 15	22.36	0.45	87.23	12.34	1.829	12.39	D+F+J
es	0.08	6.51		0.86	99.14		2.358	0.00	F+I
35	0.08	7.69	0.49	0.84	96.13	3.03	2.210	3.06	F+J

A—H₃BO₃; B—Li₂O₅B₂O₃·10H₂O; C—Li₂O·2B₂O₃·3H₂O; D—LiBO₂·2H₂O; F—LiOH·H₂O; J—Mg(OH)₂; H—2MgO·3B₂O₃·15H₂O(多水硼镁石,Inderite); G—MgO·3B₂O₃·7.5H₂O

[₩] 平均值

^{*}average value

恒温水浴中搅拌, 经一段时间后,隔日取同一样品测定其折射率,并同时进行化学分析以确定平衡到达与否。实验表明,二十昼夜该体系即可到达平衡,但取样均在二十八昼夜之后。 四相无变点的确定,液相用化学分析,固相采用偏光镜检。每个四相无变点,都取有两个以上样品,无论是液样的化学分析,还是固相的偏光镜检都是一致的。

实验结果与讨论

 $Li_2O-MgO-B_2O_3-H_2O$ 四元体系在 40° C时的溶度数据及其相应的固相列入表中,并以水顶为中心用射线投影法表示于图1中,图2是体系中各无变点和单变线上溶液的组成以 $Li_2O+MgO+B_2O_3=100$ mol 时的含水量在 $Li_2O-B_2O_3$ 垂面上所作的水量图。

由图 1 可以看出,图中有八个三相无变点: e_1 Li₂O 16.59mol/100mol 盐 (下同); e_2 MgO 10.53; e_3 Li₂O 17.81; e_4 MgO 14.98; e_5 Li₂O 49.32; e_6 MgO 37.22; e_7 Li₂O 87.27; e_8 MgO 0.68 六个四相无变点; E_1 MgO 1.68、 Li₂O 15.74; E_2 MgO 2.53、 Li₂O 16.83(照片1); E_8 MgO 3.06、 Li₂O 17.98(照片2); E_4 MgO 1.10、 Li₂O 55.22; E_6 MgO 1.72、 Li₂O 63.78(照片 3); E_6 MgO 0.43、 Li₂O 87.23; 十三条单变线; e_1E_1 A+B; E_1e_2 A+G; E_1E_2 B+G; E_2E_3 C+G; e_4E_3 G+H; E_8E_4 C+H; e_6E_4 C+D; E_4E_6 D+H; e_6E_5 H+J; E_5E_6 D+J; e_7E_6 D+F; e_8E_6 F+J。

整个图面分为八个结晶区, 相应固相均标在图1中, 其中Li₂O·5B₂O₃·10H₂O、

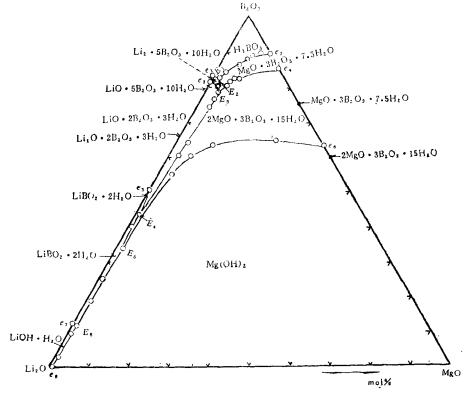
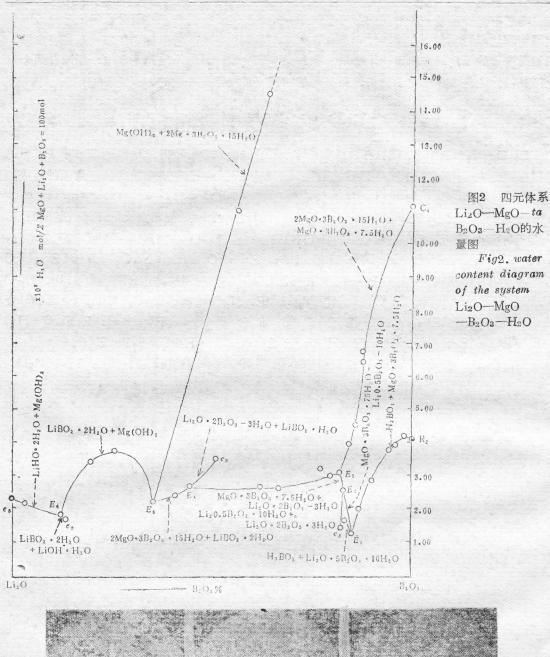



图 1 四元体系Li₂O-MgO-B₂O₃ - H₂O 40°C 时的溶度图 Fig1 Janeoke Projection diagram of the system Li₂O-MgO-B₂O₂-H₂O at 40°C

照片 $1 E_2(10 \times 25)$ (G+B+C)Photo 1 $E_2(10 \times 25)$ (G+B+C)

照片2 $E_3(10\times25)$ (G+H+C) Photo 2 $E_3(10\times25)$ (G+H+C)

照片 $3 E_5 (10 \times 25)^{\circ}$ (D+H+J)Photo $3 E_5 (10 \times 25)$ (D+H+J)

LiOH。 H_2O 、LiBO。• $2H_2O$ 的结晶区均档小,依次的占投影图总面积的0.06%,0.2%和0.6%,而 $M_g(OH)$ 。的结晶区约占 85%, 这一现象与 $M_g(OH)$ 。在水中的溶度很小是一致的。

参考 文献

- (1) Dr. Howard L. Silcock, "Solubilities of inorganic and organic Compoundes" Vol. 3, part 1, P833-837.
- (2) Dr. Howard L. Silcock, "Solubilities of inorganic and organic Compoundes" Vol. 3, part 1, P651-654.
- (3) Reburnw, T., Galew, A., J. Phys. Chem., 59, 11, 19(1955).
- (4) 中国科学院青海盐湖所, "卤水和盐的分析方法", 科学出版社 P.45 (1973)。
- (5) CRC. Handbook of Chemistry and Physics, west., R. C. 63th ed.
- (6) 中国科学院地质矿产所,"透明矿物显微镜鉴定表",地质出版社 北京 192、332、644页(1977)。

STUDY ON QUATERNARY SYSTEM Li₂O—NgO—B₂O₃—H₂O AT 40°C

Guo Zhizheng Chen Peihang Chen Yuensheng

(Department of Chemistry, Northwestern University, Xian)

The solubilities of the quaternary system Li₂O-MgO-B₂O₃-H₂O at 40±0.05° have been studied. The Janecke projection diagram of system and the water—content curve of the double saturated solution were consturcted (Fig. 1. 2). There are 8 ternary invariant points: e₁, e₂, e₃, e₄, e₅, e₆, e₇ and e₈ and 6 quaternary invariant points: E₁, E₂, E₃, E₄, E₅ and E₆ and 13 monovaiat lines: e₁E₁, e₂E₁, E₁E₂, e₃E₂, E₂E₃, e₄E₃, E₃E₄, e₅E₄, E₄E₅, e₆E₅, E₅E₆, e₇E₆ and e₃E₆ in the diagram. Whole diagram is divided by these lines into 8 crystallization fields corresponding to the solid phases: H₃BO₃, 2MgO·3B₂O₃·15H₂O (Inderite), MgO·2B₂O₃·7.7H₂O, 5B₂O₃·10H₂O, Li₂O·2B₂O₃·3H₂O, LiBO₂·2H₂O, LiOH·H₂O and Mg (OH)₂ resectively. The fields of LiOH·H₂O, LiBO₂·2H₂O, and Li₂O·5B₂O₃·10H₂O are very small, while that of Mg (OH)₂ is so large as to occupy about 85% of the total area of the diagram, which is in good agreement with the solubility of Mg(OH)₂ in water.

Keywords quaternary system solubility double saturated solution