1986年6月

冠醚过渡金属配合物的制备

李红琦 江夭籁

(中国科学院兰州化学物理研究所)

碱金属、碱土金属、希土元素、锕系元素的阳离子与冠醚形成配合物的报导已 有许多11-41, 但过渡金属Mn、Co、Ni、Cu的二价阳离子与冠醚形成配合物的报导 却很少,而且不成系统^[5,6],还未见到Fe⁸⁺、Cr⁸⁺与冠醚形成配合物的报导。我们 以12-冠-4(I)、15-冠-5(Ⅱ)、18-冠-6(Ⅲ)为配体、制备了Fe³+、Cr³+、 Mn²+、 Co2+、Ni2+Cu2+的硝酸盐和氯化物两系列配合物。

关键词:过渡金属配合物 冠醚配合物 制备

实 验

1. 试剂

 $C_{ii}(NO_3)_2 \cdot 6H_2O$, $N_i(NO_3)_2 \cdot 6H_2O$, $CO(NO_3)_2 \cdot 6H_2O$, $Cr(NO_3)_3 \cdot 9H_2O$, Fe(NO₃)·9H₂O、CuCl₂2H₂O、Ni₂Cl·6H₂O、CoCl₂·6H₂O、CrCl₃·6H₂O 为分析纯; FeCls·2H₂O、50%Mn(NO₃),水溶液为化学纯; 12-冠-4、15-冠-5、18-冠-6为西德Merck -Schuchardt公司出品。

2.配合物的制备方法

- (A) 等應尔效的金属盐和冠醚,分别溶于适量的甲醇中,混合后回流搅拌约两小时, 在于燥器內使溶剂缓慢挥发至近干,有晶体析出,晶体用丙酮洗涤。
- (B) 等摩尔数的金属盐和冠醚,分别溶于少量无水乙醇,混合后加入氯仿、正已烷, 使乙醇溶液: 氯仿: 正已烷为1:1:3,放入干燥器内使溶剂缓慢挥发至近干,有晶体析出。晶体 用1:4的丙酮、正已烷混合液洗涤。
- (C) 等摩尔数的金属盐和冠醚。分別溶于适量的乙腈,混合后回流搅拌两小时,蒸去 **大部分溶剂,密闭静置,有晶体析出。**
- (D)前几步操作与A法相同。待甲醇挥发至近于时,加入适量的丙酮,再滴加正已烷或 正庚烷。使溶液保持澄清,干燥器内静置。有晶体析出。

3.配合物的测定

配合物的熔点用东德PHMK 05型显微熔点仪测定。C、H、N 元素分析数据是用意大利

Carlo Erba公司1106型元素分仪得到的。配合物的红外光谱用美国PE-325 型红外光 栅 分光光度计在4000-200cm⁻¹范围内测定。

结果与讨论

从表 1、表 2 的数据看,配合物与无机盐及配体相比,熔点升高;红外光谱中18-冠-6、15-冠-5、12-冠-4在1110cm⁻¹、1115cm⁻¹和1130cm⁻¹处的C-O-C伸振动形成配合物后向低波数位移了约1 5-60cm⁻¹。属于 CH₂ 面内摇摆振动(δ_{CH_2})的~990cm⁻¹、~943cm⁻¹配合后发生了变化。配合物的外观、熔点、红外光谱及其他数据⁻⁷的变化证明较稳定的配合物已形成。

表 1 配合物的元素分析结果及制备方法
Table 1 Elemental Analysis Data and Preparation Methods of Complexes

配合物 complexes	制备方法 preparation methods	计算值(%) calculated			实验值(%) found		
		С	Н	N	С	Н	N
Cu(NO) ₃ • 111 •3H ₂ O	Λ,Β,	28.48	6.37	5.54	28.21	6.01	5.3
$Cu(NO_3) \cdot \mathbf{II} \cdot 2H_2O$	$\mathbf{\Lambda}^{-1}$	27.03	5.45	60.3	26.97	5.51	6.1
$Cu(NO_3)_2 \cdot I$	Λ	26.04	4.44	7.69	26.41	4.50	7.4
Ni(NO3)2• III•3 H2O	A, B	28.73	6.03	5.58	28.43	6.10	5.4
$Ni(NO_3)_2 \cdot \Pi \cdot 7H_2O$	Α	22.68	6.42	5.29	22.82	6.11	5.2
$Co(NO_3)_2 \cdot \mathbf{II} \cdot 3H_2O$	В	28.72	5.90	5.58	28.59	6.01	5.5
$Co(NO_3)_2 \cdot \Pi \cdot 2.5H_2O$	A	26.80	5.57	6.24	26.88	5.58	6.3
$C_0(NO_3)_2 \cdot I \cdot 1.5H_2O$	A	24.88	4.91	7.25	24.98	4.92	7.3
$M_{1}(NO_{3})_{2} \cdot \mathbf{\Pi} \cdot 4H_{2}O$	A, B	27.97	6.20	5.43	27.94	6.00	5.0
$Mn(NO_3)_2 \cdot \Pi \cdot 2H_2O$	Λ	27.59	5.56	6.44	27.38	5.63	6.
$Mn(NO_3)_2 \cdot I \cdot 0.5H_2O$	Λ	26.39	4.67	7.69	26.32	4.68	7.
$Fe(NO_3)_3 \cdot \mathbf{II} \cdot 3H_2O$	В	25.70	5.40	7.49	25.89	5.47	7.
$C_r(NO_3)_3 \cdot \mathbf{II} \cdot 3H_2O$	A	25.91	5.43	7.35	25.98	5.26	7.
CuCl ₂ • II • 4H ₂ O	Λ	30.58	6.64	,	30.39	6.79	
$CuCl_2 \cdot \mathbf{M} \cdot 2H_2O$	Ą	30.74	6.19		30.45	6.21	
(CuCl ₂) ₄ • I ₅ •2H ₂ O	À	32.95	5.76	1	32.91	5.53	
$(C_0Cl_2)_3 \cdot \mathbf{\Pi_2} \cdot 3H_2O$	C	28.56	5.80		28.52	6.12	
(CoCl ₂) ₂ • 11 •3H ₂ O	С	22.48	4.87		22.10	4.90	
$(C_0Cl_2)_2 \cdot \mathbf{I} \cdot 2H_2O$	A,C	20.36	4.27		20.37	3.98	
$(FeCl_3)_3 \cdot \mathbf{\Pi}_2 \cdot 3H_2O$	D	20.95	5.09		26.99	5.08	
$FeC1_3 \cdot II \cdot 2H_2O$	D	28.00	5.60		27.83	5.23	
(FeCl ₃) ₅ • I ₄	D	25.35	4.26		25.15	4.17	
$CrCl_3 \cdot \mathbf{II} \cdot 4H_2O$	A	29.11	6.37		29,23	6.46	
CrCl ₃ • II •3.5H ₂ O	A	27.16	6.11	1	27.02	6.10	

表 2 配合物的外观、熔点及部分红外光谱数据

Table 2 Appearances, Melting Points and Some Infrared Spectral Data of Complexes

配合物 complexes	外 观 appearances		熔点(℃) m.p.	vc-o-c (cm ⁻¹)			
$Cu(NO_3)_2 \cdot \mathbf{II} \cdot 3H_2O$	蓝色针状晶体	blue needle	124125	1095	950	958	
$Cu(NO_3)_2 \cdot II \cdot 2H_2O$	浅蓝色晶体	pale blue crystal	100102	1070	952	958	
$Cu(NO_3)_2 \cdot \mathbf{I}$	浅蓝色晶体	pale blue crystal	*	1070	930	910	
$Ni(NO_3)_2 \cdot III \cdot 3H_2O$	绿色针状晶体	green needle	94	1100	9 5 5	960	
$Ni(NO_3)_2 \cdot \Pi \cdot 7H_2O$	绿色针状晶体	green needle	61-63	1090	940	944	
$C_0(NO_3)_2 \cdot \mathbf{II} \cdot 3H_2O$	紫红色晶体	purplish red crystal	103-104	1095	955	960	
$Co(NO_3)_2 \cdot \prod \cdot 2.5 H_2O$	紫红色晶体	purplish red crystal	182-184	1070	960		
$Co(NO_3)_2 \cdot I \cdot 1.5H_2O$	紫红色晶体	purplish red crystal	*	1065	930		
$Mn(NO_3)_2 \cdot \mathbf{II} \cdot 4H_2O$	白色针状晶体	white needle	83-84	1095	955		
$Mn(NO_3)_2 \cdot \prod \cdot 2H_2O$	白色针状晶体	white needle	*	1065	950		
$Mn(NO_3)_2 \cdot I \cdot 0.5H_2O$	白色晶体	white crystal	*	1065	925		
$Fe(NO_3)_3 \cdot \mathbf{II} \cdot 3H_2O$	黄色晶体	yellow crystal	72-73	1085	956	952 982	
$C_r(NO_3)_3 \cdot \mathbf{II} \cdot 3H_2O$	蓝色粉末	blue powder	124-126	1085	955	968	
CuCl•Ⅲ•4H ₂ O	蓝色晶体	blue crystal	72-73.5	1095	958		
$CuCl_2 \cdot II \cdot 2H_2O$	蓝色晶体	blue crystal	69-71	1095	942		
(CuCl ₂) ₄ • I ₅ •2HO	绿色晶体	green crystal	*	1070	930	910	
$(C_0Cl_2)_3 \cdot \mathbf{H}_2 \cdot 3H_2O$	蓝色晶体	blue crystal	125-126.5	1085	955	940	
$(C_0Cl_2)_2 \cdot II \cdot 3H_2O$	蓝色晶体	blue crystal	*	1074	958	965	
$(C_0Cl_2) \cdot I \cdot 2H_2O$	蓝色晶体	blue crystal	*	1040	930		
(FeCl₃)₃• Ⅲ₂• 3H₂O	黄色针状晶体	yellow needle	138-140	1085	953		
FeCl ₃ • II • 2H ₂ O	黄色晶体	yellow crystal	*	1070	963		
(FeCl ₃) ₅ • I 4	黄色晶体	yellow crystal	*	1068	925		
$C_rCl_3 \cdot \mathbf{II} \cdot 4H_2O$	灰色粉末	grey powder	137-139	1085	953	,	
$C_rCl_3 \cdot II \cdot 3.5H_2O$	灰色粉末	grey powder	120-121	1095	940	•	

^{*} sample decomposes

参考文献

- [1] Christensen, J.J., Eatough, D.T. and Izatt, Chem. Rev. 74(3), 3511 (1974).
- [2] Pedersen, C.J. and Frensdroff, H.K., Angewandte Chemie 11, 16(1972).
- [3] Bunzli, J.G. and Wessner, D. Helv. Chim. Acta 64, 582(1981).
- [4] Costes, R.M. and Keller, N., Inorg. Nucl. Chem. Lett. 11 467(1975).
- [5] Su, A.C.L. and Weiber, J.E., Inorg. Chem. 7 176(1968).
- [6] Knochel, A., Klimer, J., Oehler, J. and Roudolph G., Inorg. Nucl. Chem. Lett 11, 787(1975).
- [7] 李红琦 硕士学位论文,中国科学院兰州化学物理研究所 1985.3.

PREPARTION OF TRANSITION-METAL-CROWN ETHER COMPLEXES

Li Hongqi Jiang Tianlai

(Lanzhou Institute of Chemical Physics, Chinese Academia sinica)

Twenty-four complexes of transition-metal (Cr, Fe, Cu, Mn, Co, Ni) nitrate and chlorides with 12-crown-4, 15-crown-5, 18-crown-6 had been prepared. Methods for synthesis, elemental analysis, melting points and some infrared spectral data of the complexes were given.

Keywords transition-metal complex crown ether complex preparation