JOURNAL OF INORGANIC CHEMISTRY

三核钼原子簇化合物研究

 $(Me_4 N) [Mo_3(\mu_3 - O) (\mu - Br)_3(\mu - O_2CH)_3Cl_3]$

的合成和晶体结构

吴鼎铭 黄建全 黄金陵 (中国科学院福建物质结构研究所)

(Me₄N)[Mo₃(μ_{3} -O)(μ -Br)₃(μ -O₂CH)₃Cl₃]晶体是在介质HCl-EtOH中, 通过MoBr₈、 甲酸和Me₄NBr进行反应制得。由X射线单晶结构分析,空间群为P1, 晶胞参数: a = 6.848(1), b = 11.933(1), $c = 13.164(1)(\text{\AA})$, a = 100.20(1), $\beta = 93.12(1)$, $\gamma = 104.14$ (1)(°); z = 2; D_{obs.} = 2.72gcm⁻³, D_{cale} = 2.76gcm⁻³。研究表明, 晶体属离子型, 山 (Me₄N)⁺阳离子和貘阴离子

 $[Mo_{3}(\mu_{3}-O)(\mu-Br)_{3}(\mu-O_{2}CH)_{3}Cl_{3}]^{-}$

组成。 簇阴离子中,μ₃-O原子桥联以等边三角形排布的三核钼簇胳,成为单氧帽 钼簇阴离 子。每对钼原子间另有一(μ-O₂CH)基和一个Br原子作双向桥配体,此外,每个钼原子又有一 端基Cl原子配位,使得在每个Mo原子周围形成畸变八面体构型。整个簇阴离子具近似C₃γ对 称性。

关键词:三核钼原子簇化合物 晶体结构

在文献[1、2]报道的反应体系中,曾采用乙酸作为反应物之一,合成了三种 三 核钼簇 合物,其中双向桥联乙酰氧基起着稳定三核钼簇胳的作用。由此估计,如果以甲 酸 代 替 乙 酸,在类似的反应条件下,亦应该会得到类似的以甲酰氧基作双向桥基的三核钼簇合物。据 此设想,我们合成了两种簇合物,其簇阴离子可用下式表示:

 $[Mo_{3}(\mu_{s}-O)(\mu-X)_{3}(\mu-O_{2}CH)_{3}Cl_{3}]^{-} (X = Cl, Br)$

X = Cl时的簇合物A的晶体结构已经报道^[8],本文描述<math>X = Br时簇合物B的合成方法和X射线晶体结构分析的结果。

1.合成方法

将混合有1.0g MoBr₃、20m1甲酸和30m1事先饱和了氯化氢气体的无水乙醇溶 液 加热至 * x 于 1985年10月11日收到。

----(Me_4N)[$Mo_3(\mu_3-O)(\mu-Br)_3(\mu-O_2CH)_3Cl_3$]的合成和晶体结构

沸,待冷却后加入0.7g的Me₄NBr固体,滤去不溶物,母液放置约半年后,可析出 150mg的 棕黑色柱状晶体。晶体在空气中稳定。采用悬浮法(二碘甲烷十二氯甲烷)测定晶体的密度 值。其部分元素的化学分析结果(%)如下: Mo 33.83, N 1.80, C 9.63, H 1.68;相应理 论值为Mo 33.50, N 1.63, C 9.79, H 1.76,未分析氧元素和卤素。

2.强度数据收集

晶体所属晶系与晶胞参数的测定及其精化,以及衍射强度数据的收集,均在CAD-4 四 圆衍射仪上进行。在4232个强度数据收集过程中,使用经石墨单色器单色化的MoK。射线源 ($\lambda = 0.71073$ Å),并挑选强度与取向均合适的三个衍射点(hkl: 1,6,9;0,5,7;4, 5,4)作为强度与取向的监测点,收集过程未发现强度衰减或取向矩阵漂移等现象。为了对 强度数据进行经验吸收校正,对九个衍射点进行了方位角(Ψ)扫描。

以上各项实验所得晶体学参数和衍射数据收集见表1。

chemical formula	$Mo_3Br_3Cl_3O_7NC_7H_{15}$			
M	859.039			
a(Å)	6.848 (1)			
b(Å)	11.933 (1)			
c(Å)	13.164 (1)			
α(°)	100.20 (1)			
β(°)	93,12 (1)			
γ(°)	101.14 (1)			
space group	PI			
Z	2			
V (Å)	1034.4 (5)			
Dobs. (g·cm ⁻³)	2,72			
D _{calc} . (g·cm ⁻³)	2,76			
collected range of diffraction $\Delta \theta(\circ)$	1 26			
collected total No. of diffraction points	4232			
No. of diffraction points with $I \ge 3\sigma(I)$	3514			

袅	1	醌	体	学	参	数	和	衍	射	数	据	收	奠
	-			-	_							_	

Table 1 Crystallographic Parameters and Diffraction Data Collection

结构分析

衍射点强度数据经Lp因子校正,并采用九个衍射点的方位角(Ψ)扫描的强度数 据 进行 经验吸收校正^[4],其最小和最大透射率因子分别为0.3872和0.9986。全部计算工作采用SDP 单晶结构分析程序系统^[5],在PDP-11/70电子计算机上进行^[5]。结构分析先采 用 直 接 法 (MULTAN-80^[6]),可在E图上找到Mo和Br的各三个独立原子坐标并进行对角元矩阵最小 二乘方修正,R=0.25,且它们的各向同性温度因子值均在正常范围之内;随即通过三轮差值 电子密度合成,便找出其余全部非氢原子坐标参数;最后采用各向 异性温度因子,挑选 I≥ 3.0σ(I)的3514个衍射点,对非氢原子的217个参数进行数轮全矩阵最小二乘方修正,最终 偏离因子 R=0.030。H原子坐标予测定。修正终了时的最大参数位移量与其标准 偏 差之比

atom	Х	Y	Z	B_{eqv} (Å ²)
Mo(1)	7750(1)	2176(0)	2449(0)	1,938(8)
Mo(2)	7020(1)	4254(0)	2659(0)	1.879(8)
Mo(3)	6440(1)	2902(0)	346(0)	2.031(9)
Br(1)	5431(1)	2843(1)	3765(0)	2.81(1)
Br(2)	4685(1)	994(1)	1291(1)	3.01(1)
Br(3)	3680(1)	3860(1)	1586(0)	2.79(1)
Cl(1)	7722(2)	510(1)	3275(1)	3,56(3)
C1(2)	5882(2)	5760(1)	3805(1)	3.03(3)
C1(3)	4417(2)	2339(2)	-799(1)	3.66(3)
O	8881(5)	3505(3)	1811(2)	2.03(7)
O(1)	10201(5)	2953(4)	3515(3)	2.81(8)
O(2)	9611(5)	4750(4)	3685(3)	2.78(8)
O(3)	8117(6)	5565(3)	1862(3)	2.71(8)
O(4)	7617(6)	4410(4)	297(3)	3.21(9)
O(5)	8497(6)	2054(4)	66(3)	3.07(9)
() (6)	9659(5)	1395(3)	1435(3)	2.80(8)
Ν	1684(5)	8489(5)	3390(4)	3.4(1)
C(1)	10682(8)	4038(5)	3861(4)	2.8(1)
C(2)	8250(9)	5385(5)	899(4)	3.0(1)
C(3)	9665(9)	1558(5)	525(4)	3.0(1)
C(4)	-98(12)	8088(7)	3939(6)	5.1(2)
C(5)	2583(12)	9738(8)	3870(6)	5.3(2)
C(6)	995(15)	8468(8)	2283(5)	6.2(2)
C(7)	3134(14)	7727(8)	3434(8)	8.9(2)

表2原子坐标参数(×104)与等份温度因子值及其标准偏差Table 2Atomic Coordinate Parameters (×104), Equivalent Tem-

----(Me₄N)[Mo₃(µ₃--O)(µ-Br)₃(µ--O₂CH)₃Cl₃]的合成和晶体结构

表 3 Table 3	主要體长值 () Main Bond Lengths	Å)及其标准偏差 and Their Standard	Deviations
Mo(1)-Mo(2)	2.593(1)	Mo(1)-O(6)	2.095(3)
Mo(1)-Mo(3)	2.598(1)	Mo(2)-O(3)	2.080(4)
Mo(2)-Mo(3)	2.596(1)	Mo(2)-O(2)	2.090(4)
Mo(1)-Br(1)	2.541(1)	Mo(3)-O(4)	2.090(4)
Mo(1)-Br(2)	2.542(1)	Mo(3)-O(5)	2.098(4)
Mo(2)-Br(1)	2.543(1)	C(1)-O(1)	1,267(7)
Mo(2)-Br(3)	2.539(1)	C(1)-O(2)	1.267(7)
Mo(3)-Br(3)	2.543(1)	C(2)-O(3)	1.259(7)
Mo(3)-Br(2)	2.542(1)	C(2)-O(4)	1,269(7)
Mo(1)-Cl(1)	2.427(2)	C(3)-O(5)	1.271(7)
Mo(2)-Cl(2)	2.412(1)	C(3)-O(6)	1.250(7)
Mo(3)-Cl(3)	2.420(1)	N-C(4)	1.494(8)
Mo(1)-O	1,972(3)	N-C(5)	1.507(9)
Mo-(2)-()	1.978(3)	N-C(6)	1.502(8)
Mo-(3)-O	1.977(3)	N-C(7)	1.476(9)
Mo(1)-O(1)	2.080(4)		

图 1 簇合物分子在单胞中的排列 Fig. 1 Arrangement of cluster molecule in unit cell

表4 主要鏈角值及其标准偏差(°)

. . .

Table 4 Main Bond Angle Values and Their Standard Deviations

bond angle	degree(°)	bond angle	degree(°)	bond angle	degree(°)
Mo(1)-Mo(2)- Mo(3)	60.09(2)	Br(2)-Mo(1)- Br(1)	88.45(2)	O-Mo(3)-O(5)	78.73(14)
Mo(2)-Mo(1)- Mo(3)	60.02(2)	$Br-(2)-M_0(1)-O(6)$	89.36(11)	O-Mo(3)-O(4)	79.84(15)
Mo(1)-Mo(3)- Mo(2)	59.90(2)	O(1)-Mo(1)- Br(1)	89.89(10)	O-Mo(3)-Br(2)	107.76(10)
Mo(1)-O-Mo(2)	82.06(12)	O(1)-Mo(1)-O(6)	91.16(15)	O-Mo(3)-Br(3)	107.92(10)
Mo(1)-O-Mo(3)	82.29(13)	C1(2)-Mo(2)-O	157,79(11)	O(4)-Mo(3)-O(5	89.66(16)
Mo(2)-O-Mo(3)	82.07(13)	Br(3)-Mo(2)-O(2)	171.93(11)	O(4)-Mo(3)-Br(3)	89.71(11)
Mo(1)-Mo(2)- Br(1)	59.29(2)	Br(1)-Mo(2)- O(3)	172.35(10)	Br(2)-M ₀ (3)- O(5)	90.33(12)
Mo(2)-Mo(1)- Br(1)	59,38(2)	C1(2)-Mo(2)- O(3)	85.10(11)	Br(2)-Mo(3)- Br(3)	89.37(2)
Mo(1)-Br(1)- Mo(2)	61.33(2)	C1(2)-M ₀ (2)- O(2)	84.13(11)	C(1)-O(1)-Mo(1)	123.42(34)
Mo(1)-Mo(3)- Br(2)	59.27(2)	C1(2)-Mo(2)- Br(1)	87.40(4)	C(1)-O(2)-Mo(2)	122.42(36)
Mo(3)-Mo(1)- Br(2)	59.28(2)	C1(2)-Mo(2)- Br(3)	87.81(4)	U(1)-C(1)-O(2) 123.67(49)
Mo(1)-Br(2)- Mo(3)	61.46(2)	O-Mo(2)-O(2)	79.83(14)	C(2)-O(3)-Mo(2)	123.24(39)
Mo(2)-Mo(3)- Br(3)	59.19(2)	O-Mo(2)-O(3)	79.65(14)	C(2)-O(4)-Mo(3)	122.31(25)
Mo(3)-Mo(2)- Br(3)	59.36(2)	Ú-Mo(2)-Br(1)	107.98(10)	O(3)-C(2)-O(4) 124.24(55)
Mo(2)-Br(3)- Mo(3)	61.44(2)	$O-M_0(2)-Br(3)$	108.04(10)	C(3)-O(5)-Mo(3)122.24(34)
0-Mo(1)-Cl(1)	157.63(11)	Br(1)-Mo(2)- Br(3)	88.42(2)	C(3)-O(6)-Mo(1)	122.27(36)
Br(1)-Mo(1)- O(6)	171.72(11)	Br(1)-Mo(2)- O(2)	90.78(11)	O(5)-C(3)-O(6)	124.78(50)
Br(2)-Mo(1)- O(1)	71.86(12)	$O(3) - M_0(2) - Br(3)$	89.78(11)	C(4)-N-C(5)	108.64(53)
Cl(1)-Mo(1)- O(1)	84.11(12)	O(3)-Mo(2)-O(2)	89.96(15)	C(4)-N-C(6)	108.53(61)
Cl(1)-Mo(1)- O(6)	84.52(12)	C1(3)-Mo(3)-O	157.53(10)	C(4)-N-C(7)	110.49(64)

.

----(Me₄N)[Mo₃(µ₃-O)(µ-Br)₃(µ-O₂CH)₃Cl₃]的合成和晶体结构

续表					
C1(1)-Mo(1)- Br(1)	87.42(4)	Br(3)-Mo(3)- O(5)	173.09(11)	C(5)-N-C(6)	106.90(57)
C1(1)-Mo(1)- Br(2)	87.86(5)	Br(2)-Mo(3)- O(4)	172.24(11)	C(5)-N-C(7)	112.04(71)
O-Mo(1)-O(1)	80.17(15)	CI(3)-Mo(3)-O(5)	85.01(11)	C(6)-N-C(7)	110.11(64)
O-Mo(1)-O(6)	80.02(15)	C1(3)-Mo(3)- O(4)	84.71(12)		
O-Mo(1)-Br(1)	108.25(10)	C1(3)-Mo(3)- Br(2)	87.56(5)		
O-Mo(1)-Br(2)	107.91(10)	C1(3)-Mo(3)- Br(3)	88.09(4)		

为0.79。投入全部非氢原子坐标参数,计算差电子密度合成,其最高电子密度值为0.83 (e/\AA^{\bullet}) 。

表 2 列出全部非氢原子的坐标参数以及等价温度因子值及其标准偏差,表 3 和表 4 列出 了**重要的键长和键**角及其标准偏差。

结构描述和讨论

图 1 画出了簇合物分子在一个单胞内的分布。由图亦可清晰看出簇阴离子的构型。由图 显见,该晶体属于离子型晶体。每个独立单元包含一个阳离子(Me₄N)⁺和一个簇阴离子如下 式:

 $[M_0(\mu_3-O)(\mu-B_r)_3(\mu-O_2CH)_3Cl_3]^-$

阳离子中N周围四个C原子成四面体排布,N-C间距属单键键长(1.48-1.51Å),簇阴离子的结构化学,除了在每对Mo-Mo之间由甲酰氧基(H--C $\begin{pmatrix} O \\ O \end{pmatrix}$)取代乙酰氧基 (CH₃-C $\begin{pmatrix} O \\ O \end{pmatrix}$)作为双向桥基之外,和EMo₃(μ_3 -O)(μ -Br)₃(μ -OAc)Cl₃]⁻⁽²¹簇阴离子 十分相似。即三个钼原子形成等边三角形排布,Mo-Mo键长分别为2.593(1)、2.598(1)、 2.596(1)(Å), μ_3 -O将三个Mo原子连接在一起,其Mo-O键长分别为1.972(3)、1.978(3)、 1.977(3)(Å)。三个双向桥联的甲酰氧基位于和 μ_3 -O相同的一侧,而三个端基氯原子和另 三个双向桥联的Br原子则位于与 μ_3 -O相对的另一侧。各种配体的以上分布使得每个Mo原子的配位周围实现了[Br₂MoO₃Cl]六配位畸变八面体构型。以上描述说明,本文簇合物属于单 氧帽(M1)三核钼簇合物系列^{[1-31}。与同类簇合物类似,其中每个Mo的形式氧化态为3 $\frac{1}{3}$, 整个[Mo₃]簇胳核心还余下 8 个电子形成金属键,因此每个Mo-Mo键的键级为 4/3,与三根Mo-Mo键的单键键长吻合得较好。

表 5 比较了同类型的四种簇阴离子的若干种键长数据。

表 5 四种簇阴离子若干罐长的比较(平均值, Å)

Table 5 Comparison for Some Bond Lengths in Four

Cluster	Anions	(av.,	Å)
---------	--------	-------	----

cluster anion*	Mo-(μ-X)	Mo-Mo	Mo-(μ ₃ -O)	Mo-Clend	ref.
$(\mathbf{I}) \mathbf{X}_{\mu} = \mathbf{C}\mathbf{I}$	2.419	2.577	1.992	2.419	2
$(\Pi) X_{\mu} = Br$	2.549	2.591	1.970	2.442	2
(Ⅲ) X _P = C1	2.409	2.573	1.983	2.412	3
$(\mathbf{N}, \mathbf{N}) \mathbf{X}_{\mu} = \mathbf{B}\mathbf{r}$	2.542	2.596	1.976	2.420	this paper

* I $(C_5H_7S_2)[M_{O_3}(\mu_3-O)(\mu-Cl)_3(\mu-OAc)_3Cl_3]$

 $[I \quad (C_{5}H_{7}S_{2})[Mo_{3}(\mu_{3}-O)(\mu-Br)_{3}(\mu-OAc)_{3}Cl_{3}]$

 $III \quad (Et_4N)[M_{03}(\mu_3-O)(\mu-Cl)_3(\mu-O_2CH)_3Cl_3]$

 \mathbf{W}_{1} (Me₄N)[Mo₃(μ_{3} -O)(μ -Br)₃(μ -O₂CH)₃Cl₃]

比较这四种簇合物可以看出, I和Ⅱ是异质同晶,而Ⅲ和Ⅳ的晶体分属于单斜和三斜两 种不同的晶系,这可能由于后者中阳离子不同所致。就簇阴离子的结构化学而言,文献[2] 已经讨论了在I和Ⅱ中,由于Ⅱ中双向桥联原子之一是共价半径较大的Br原子,使得Ⅱ簇 胳中Mo-Mo键拉长,Mo-O(μ₃)键缩短,以及Mo-Cl(端基)键由于反位效应而相应拉长的 现象。比较表 5 中的Ⅲ和Ⅳ,显见在Ⅳ中相应的现象同样存在。总之,甲酰氧基取代乙酰氧 基作为双向桥基可同样具有稳定三核钼簇胳的作用。

面间角的计算表明, [Mo₃]、[Cl₃]、[Br₃]三个平面基本平行: [Mo₃]—[Cl₃] 0.1(°); [Mo₃]—[Br]₃ 0.5(°); [Cl₃]—[Br₃] 0.4(°)。表 6列出若干平面方程及各原子到 最 小二 乘平面的距离。由表 6 显见, 各平面的共面程度很好, 整个簇阴离子具有近似C₃v对称性。

表 6	最小二乘平面方程	与各原子至最小二乘平面方程的距离
-----	----------	------------------

Table 6 Least-squares Plane Equation and Distances from Each Atom to Equation

рІале	AX + BY + CZ - D = 0				distances from each atom to least-squares plane equation					
	A	В	С	D			×10 ² (Å)			
т	0 5642	0 9166	-0 7624	4 0.8034	0.0004	Mo(1)	Mo(2)	0(1)	O(2)	C(1)
1	0.0043	0.0100	~0.1024		1.2	-0.2	- 3.0	-1.4	3.4	
п	-0.9681 0	A 9106	-0.1223	-2.9955	Mo(2)	Mo(3)	O(3)	0(4)	C(2)	
		0.2100			-0.2	-0.5	1.3	1.6	-2.3	
Ш	-0.5350 -0.8056 -0.2547 -4.	0 9050	0.0547	4 01 00	Mo(1)	Mo(3)	O(5)	O(6)	C(3)	
		- 4.8180	-1.9	0.6	1.4	4.4	-4.5			

由文献[2、3、7]及本文描述的反应过程可比较看出,在该同种簇阴离子中,双向桥基 X(1)和端基X(2)究竟是哪一种卤素原子,取决于反应体系中介质HX和原料 MoX₈的不 ----(Me₄N)[Mo₃(µ₃-O)(µ-Br)₃(µ-O₂CH)₃Cl₃]的合成和晶体结构

同。在HCl-EtOH中,所得簇阴离子的端基X(2)总是Cl原子;而原料采用MoCl₃时,其X(1)为Cl;采用MoBr₃时,X(1)为Br。一旦改用介质HBr-EtOH和原料MoCl₃时,X(1)仍为Cl,X(2)则为氯和溴原子的统计分布(Cl1/2,Br1/2),原因已在文献[7]中讨论。应予指出,上述结论对于阐明该类簇阴离子的成簇机理显见是有意义的。

致谢:本所元素分析组协助鉴定样品,谨此表示谢意。

参考文献

- [1] 商茂虞、黄金陵、卢嘉锡,中国科学,B(1),1(1985)。
- [2] 吴鼎铭、庄鸿辉、郑建基、黄建全、黄金陵,中国科学,B(7),589(1985)。
- [3] 林贤梯、黄金陵、黄建全,科学通报,19,1216(1984)。
- [4] North, A.C.T., Philips, D.C. & Mathews, F.S., Acta Cryst., A 24, 351(1968).
- [5] Frenz, B.A., Enraf-Nonius Structure Determination Package, Version 17(1980)
- [6] Main, P., Fiske, S.J., Hull, S.E., Lessinger, L., Germain, G., Declercq, J.P.
 & Woolfson, M.M., MULTAN-80, A System of Computer Programs for the Automatic Solution of Crystal Structure from X-ray Diffraction Data, University of York, England.
- [7] 庄鸿辉、吴鼎铭、郑建基、黄建全、黄金陵,科学通报,16,1220(1985)。

STUDIES ON TRINUCLEUS Mo

CLUSTER COMPOUND

SYNTHESIS AND CRYSTAL STRUCTURE OF

(Me N) $[Mo_{3}(\mu_{3}-O)(\mu-Br)_{3}(\mu-O_{2}CH)_{3}CI_{3}]$

Wu Dingming Huang Jianquan Huang Jinling (Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences)

The brown-black crystal of the title Mo cluster compound was synthesized by the reaction of MoBr₃ and HCO₂H with Me₄NBr in the medium of unhydrous EtOH saturated by gas HC1. The crystal structure with space group P₁ has been determined by means of X-ray single crystal structure analysis method. The unit cell parameters are as follows: a = 6.848(1), b =11.933(1), $c = 13.164(1)((\text{\AA}), \alpha = 100.20(1), \beta = 93.12(1), \gamma = 101.14(1)$ (°); Z = 2; $D_{obs.} = 2.72 \text{gcm}^{-3}$, $D_{calc.} = 2.76 \text{gcm}^{-3}$. The results show that the crystal belongs to a discrete ionic one, containing an (Me₄N)⁺ cation and an

$$[Mo_3(\mu_3-O)(\mu-Br)_3(\mu-O_2CH)_3Cl_3]^-$$

 γ_1^{M}

cluster anion, in which three Mo atoms form an approximately equilateral triangle with an average Mo-Me bond length of 2.596(1)(Å). On one side of the triangular plane one μ_3 -O atom binds the three Mo atoms together to form a monocapped cluster core. Each pair of Mo atoms is further bridged by a Br ligand and an HCO_2^- group. In addition, there is a terminal Cl atom attaching to each Mo atom. The local coordination polyhedron around each Mo atom is a distored octahedron. The symmetry of the cluster anion as a whole is approximately C_{3v} .

Keywords trinucleus Mo cluster compound crystal structure