18-冠-6铵与硫氰酸银配合 物的晶体和分子结构

杜高英 张文兴 樊悦朋*

(山东大学化学系,济南)

用擬胶法生长出规则八面体形无色配合物单晶体,在ENRAF-NONLUS CAD4四同衍射仪上,用2461个独立可观察衍射数据,用Patterson函数法和多次 AF合成,得到配合物的全部结构参数。结构偏差因子R = 0.072, $R_{\pi} = 0.081$ 晶体 属单斜晶系,空间群为 $P_{2,1}/n$ 。晶胞参数:a = 9.032(2)Å,b = 14.243(4)Å, C = 35.092(6)Å, $\beta = 105.5^{\circ}$,Z = 4。晶体密度的计算值: $D_{e,1} = 1.546$ g/cm³。经元素 分析和X射线结构分析,确定晶体的化学式为 [(NH₄) (18C6)]₂ [Ag₂(SCN)₄]。 在配合物分子中,18-冠-6 与铵离子配位成配阳离子,银与硫氰酸根结合成配阴 离子,二者以静电力及 N-H…N 氢键力结合形成配合物分子。而中心原子银 通 过 硫成桥和硫氰酸根上硫、氮杂配,使整个分子成一条高分子长键。

关键词: 冠醚配合物 银配合物

前 言

冠醚类化合物由于其具有独特的配位性能而日益引起人们的兴趣^(1,2)。对于一价 银和铵离子分别与18-冠-6的配合物,前人已稍有研究⁽³⁾,但18-冠-6 铵和硫氰酸银同 时生成配合物的情况尚未见报道。本文研究了18-冠-6 铵离子和硫氰酸银配合物的晶体 和分子结构。

配合物晶体的制备和鉴定

在凝胶管中分别加入18-冠-6、硝酸银和硫氰酸铵,经过数天的扩散生长,便得到规则的无色八面体状配合物晶体。用X₄型熔点仪测得其熔点为:269~270℃。样品元素分析值为:C32.84%,H5.45%,N8.23%。按化学式理论计算值为:C33.18%,H5.53%,N8.29%。二者数值比较吻合。

本文千1986年1月30日收到。

^{*} 通讯联系人

X射线单晶结构分析

选用边长0.2-0.4mm 的单晶体,在 ENRAF-NONIUS CAD4 四同衍射仪上,用 经石墨单色器的Mo K_a ($\lambda = 0.71069$ Å)辐射及 $a/2\theta$ 扫描方式录谱,根据反射点的强弱,以可变的扫描速度进行扫描,在 2° < $\theta < 25°$ 范围内共收集了8111个衍射数据。用其中

图 1 分子结构图

Fig. 1 Molecular structure of ((NH₄) (18C6))₂[Ag₂(SCN)₄] explanation: The actual molecular formula is-{ [(NH₄) (18C6))₂[Ag₂(SCN)₄] }_n. It is a polymer. The Figure 1 is only a cell from the chain. To understand the coordination of center atom silver directly, two thiocyanates are added in the figure.

图 2 中心原子银与硫氰酸根配阴离子的链式结构图 Fig. 2 Chain for center atom silver coordinated with thiocyanates

F。²≥3σ(F₀)² 的2461个独立可观察反射点 进行结构分析。

品胞参数是从25个经过仔细调心的衍射 点用最小二乘法精修得到。所有的强度数据 经过PL因子较正后,再用ψ扫描进行了吸收 校正。

晶体属单斜晶系,根据系统消光规律, 确定空间群为 P_{2_1}/n 。晶胞参数为: a = 9.032(2)Å, b=14.243(4)Å, c=35.092 (6)Å, β =105.5°。晶胞体积V=4349.9Å³ Z=4,晶体密度的计算值 $D_{e_{41}}$ =1.546g/ cm³,晶体的线性吸收系数为A=11.32cm⁻¹ (MoK_a)。

通过对Patterson图的分析,求出分子中 二个银原子的位置。再经过几轮差值Fourier 合成,逐步找出其他非氢原子。给各原子加 入各向同性温度因子,用块对角矩阵最小二 乘法修正后,再使用全矩阵最小二乘法进行 各向异性温度因子修正,得到最后的结构参 数。最小差值Fourier电子云密度峰为0.298 $e/Å^3$ 。结构偏差因子R=0.072, $R_w = 0.081$ 。

配合物的化 学 式 为 〔(NH₄)(C₁₂H₂₄ O₆)]₂[Ag₂(SCN)₄], 式量为 1012.79, 最 后获得的分子结构和晶胞结构模型图、非氢

原子的坐标及相应的热参数、部分键长和键 Fig.3 Molecular packing diagram in the cell

角数据、分子中的几个重要最小二乘平面及二面角分别见下列图表。

Agl Ag2			. 2	17644
A ø2	0.7107(2)	0.2670(2)	0.38365(6)	5.38(5)
	1.3135(2)	0.2705(2)	0.37859(6)	5.29(5)
S 1	0.2071(8)	0.3425(6)	0.3219 (2)	6.4 (2)
S2	0.8183(8)	0.1914(5)	0.4406 (2)	5.2 (2)
S3	0.4717(7)	0.1598(4)	0.3472 (2)	4.7 (2)
S 4	0.5501(8)	0.3750(5)	0.4155 (2)	5.9 (2)
C 1	0.034 (2)	0.333 (1)	0.3366 (6)	3.4 (5)
C 2	0.016 (2)	0.201 (1)	0.4248 (6)	3.6 (5)
C 3	0.488 (3)	0.215 (2)	0.3050 (7)	5.2 (6)
C 4	0.537 (3)	0.323 (2)	0.4564 (8)	7.4 (6)
N 1	0.910 (2)	0.328 (1)	0.3464 (6)	5.2 (6)
N 2	0.109 (2)	0.207 (1)	0.4145 (7)	5.9 (6)
N 3	0.499 (3)	0.250 (2)	0.2759 (6)	7.9 (7)
N 4	0.534 (3)	0.281 (2)	0.4855 (7)	11.5 (9)
N 11	0.198 (2)	0.212 (1)	0.7153 (5)	4.5 (5)
N 22	0.757 (2)	0.242 (1)	0.5396 (5)	4.1 (5)
O1	0.477 (3)	0.366 (1)	0.7187 (6)	9.9 (7)
O2	0.219 (3)	0.400 (1)	0.6781 (5)	9.3 (6)
O 3	0.966 (2)	0.246 (1)	0.6655 (6)	8.6 (6)
O4	0.005 (3)	0.061 (2)	0.6619 (6)	9.2 (7)
O 5	0.252 (3)	0.018 (1)	0.7049 (5)	9.6 (6)
O 6	0.516 (2)	0.176 (2)	0.7145 (6)	9.0 (6)
O21	0.919 (2)	0.441 (1)	0.5551 (6)	14.1 (6)
O 22	0.648 (3)	0.366 (1)	0.5973 (6)	12.3 (7)
O 23	0.491 (2)	0.165 (2)	0.5870 (7)	10.7 (7)
O 24	0.688 (3)	0.036 (1)	0.5680 (5)	15.1 (6)
O 25	0.978 (3)	0.128 (2)	0.5349 (8)	14.5 (9)
O 26	0.108 (3)	0.319 (2)	0.5452 (7)	13 (1)
C 11	0.456 (4)	0.463 (2)	0.704 (1)	10 (1)
C 12	0.708 (5)	0.533 (2)	0.298 (1)	13 (1)
C 13	0.057 (3)	0.408 (2)	0.674 (1)	9.6 (9)
C 14	0.978 (5)	0.331 (2)	0.648 (1)	13 (1)
C 15	0.873 (4)	0.172 (3)	0.642 (1)	11 (1)
C 16	0.862 (4)	0.076 (3)	0.661 (1)	13 (1)
C 17	0.986 (4)	0.042 (2)	0.3202 (9)	10 (1)
C 18	0.823 (5)	0.047 (2)	0.321 (1)	12 (1)

表 1 非氢原子坐标参数及等效热参数(Begy)

.

	1		·	
atom	, X	Y	\mathbf{z}	
C 21	0.626(3)	0.270(3)	0.735 (1)	12 (1)
C 22	0.614(3)	0.355(3)	0.714 (1)	11 (1)
C 31	0.800(5)	0.496(2)	0.581 (1)	15 (1)
C 32	0.634(6)	0.431(4)	0.585 (1)	17 (2)
C 33	0.455(3)	0.307(3)	0.606 (1)	14 (12
C 34	0.438(3)	0.210(2)	0.609 (1)	15.9(9)
C 35	0.149(4)	0.049(2)	0.5930(9)	12 (2)
C 36	0.352(2)	0.015(1)	0.5667(5)	17.6(9)
C 37	0.785(3)	0.016(2)	0.547 (1)	15.6(9)
C 33	0.954(5)	0.049(3)	0.548 (1)	12 (1)
C 39	1.149(3)	0.176(2)	0.535 (1)	10 (1)
C 40	1.162(5)	0.290(4)	0.522 (1)	18 (2)
C 11	1.132(4)	0.436(2)	0.533 (1)	10 (1)
C 12	1.028(6)	0.488(3)	0.561 (1)	17 (2)

续表1

38

表2 键长数据(Å)

Table 2 Bond Lengths

atom	bond length	atom	bond length	atom	bond length
$\Lambda g_1 - S_2$	2.560(0)	S ₁ C ₁	1.6:6(0)	01-C11	1.528(0)
$Ag_1 - S_3$	2.620(0)	$S_2 - C_3$	1.602(0)	$O_1 - C_{22}$	1.301(0)
$Ag_1 - S_4$	2.628(0)	S , C ,	1.665(0)	$O_2 - C_{12}$	1.326(0)
$Ag_1 \leftarrow N_1$	2.209(0)	$S_4 - C_4$	1.601(0)	$O_2 - C_{13}$	1.502(0)
$Ag_2 - S_1$	2.542(0)	$C_1 \rightarrow N_1$	1.150(0)	O 3-C 1 4	1.324(0)
$A g_2 - S_3$	2.634(0)	$C_2 - N_2$	1.168(0)	O 3-C 1 5	1.432(0)
$\Lambda g_2 - S_4$	2.599(0)	C ,— N ,	1.128(0)	O 4-C 10	1.366(0)
$\Lambda g_2 - N_2$	2.220(0)	C 4 — N 4	1.185(0)	O 4-C 1 7	1.627(0)
atom	bc le	ond ngth	atom	bo	nd length
$0, -C_{1}$	1.	350(0)	$C_{12} - C_{20}$	1	.523(0)
$O_{2} = C_{12}$, 1.	523(0)	$C_{24} - C_{24}$	1	.440(0)
O C 2	. 1.	296(0)			
O C 2	ı · 1.	605(0)			
C + 1 C + 1	· 1.	500(0)			
$C_{13} - C_{14}$		467(0)			
$C_{15} - C_{16}$. 1.	499(0)			
() - ()					

والبرينية برواسات تدلية ومسقات الكامر فإعتران وبجد التقوير ومقاطاتها والترابي	NAMES OF TAXABLE PARTY OF TAXABLE PARTY OF TAXABLE PARTY.	الفاريبي ويرجعه معاطاته ويهيه اختلاف الأعام الألافي معاطات الكالي والارتباط	
atom	bond angle	atom	bond angle
$S_2 - Ag_1 - S_3$	118.10(0)	$\mathbf{S}_4 - \mathbf{A} \mathbf{g}_2 - \mathbf{N}_2$	114.69(0)
$S_2 - Ag_1 - S_4$	103.56(0)	$Ag_1 - S_2 - C_2$	98.06(0)
$S_2 - Ag_1 - N_1$	106.12(0)	$Ag_1 - S_3 - Ag_2$	86.63(0)
$S_3 - Ag_1 - S_4$	92.91(0)	$Ag_1 - S_4 - Ag_2$	87.21(0)
S_3 -Ag ₁ -N ₁	113.60(0)	$Ag_1 - S_3 - C_3$	101.80(0)
S_4 — Ag_1 — N_1	122.66(0)	$Ag_1 - S_4 - C_4$	95.43(0)
$S_1 - Ag_2 - S_3$	103.77(0)	$Ag_1 - N_1 - C_1$	151.02(0)
$S_1 - Ag_2 - S_4$	120.01(0)	$Ag_2 - S_1 - C_1$	100.17(0)
$S_1 - Ag_2 - N_2$	104.12(0)	$Ag_2 - S_3 - C_3$	94.87(0)
S_3 - Ag_2 - S_4	93.24(0)	$Ag_2 - S_4 - C_4$	103.59(0)
$S_3 - Ag_2 - N_2$	121.43(0)	$\Lambda g_2 - N_2 - C_2$	153.03(0)
atom	bond angle	atom	bond angle
atom 	bond angle 178.06(0)	atom 01-C22-C21	bond angle 109.03(0)
atom $S_1 - C_1 - N_1$ $S_2 - C_2 - N_2$	bond angle 178.06(0) 177.59(0)	atom $O_1 - C_{22} - C_{21}$ $O_2 - C_{12} - C_{11}$	bond angle 109.03(0) 108.10(0)
atom $S_1 - C_1 - N_1$ $S_2 - C_2 - N_2$ $S_3 - C_3 - N_3$	bond angle 178.06(0) 177.59(0) 178.16(0)	atom $O_1 - C_{22} - C_{21}$ $O_2 - C_{12} - C_{11}$ $O_2 - C_{13} - C_{14}$	bond angle 109.03(0) 108.10(0) 106.64(0)
atom $S_1 - C_1 - N_1$ $S_2 - C_2 - N_2$ $S_3 - C_3 - N_1$ $S_4 - C_4 - N_4$	bond angle 178.06(0) 177.59(0) 178.16(0) 175.15(0)	atom $O_{1}-C_{22}-C_{21}$ $O_{2}-C_{12}-C_{11}$ $O_{2}-C_{13}-C_{14}$ $O_{3}-C_{14}-C_{13}$	bond angle 109.03(0) 108.10(0) 106.64(0) 107.08(0)
atom $S_1 - C_1 - N_1$ $S_2 - C_2 - N_2$ $S_3 - C_3 - N_1$ $S_4 - C_4 - N_4$ $C_{11} - O_1 - C_{22}$	bond angle 178.06(0) 177.59(0) 178.16(0) 175.15(0) 114.75(0)	$atom$ $O_{1}-C_{22}-C_{21}$ $O_{2}-C_{12}-C_{11}$ $O_{2}-C_{13}-C_{14}$ $O_{3}-C_{14}-C_{13}$ $O_{4}-C_{13}-C_{16}$	bond angle 109.03(0) 108.10(0) 106.64(0) 107.08(0) 106.97(0)
atom $S_1 - C_1 - N_1$ $S_2 - C_2 - N_2$ $S_3 - C_3 - N_3$ $S_4 - C_4 - N_4$ $C_{11} - O_1 - C_{22}$ $C_{12} - O_2 - C_{13}$	bond angle 178.06(0) 177.59(0) 178.16(0) 175.15(0) 114.75(0) 108.20(0)	$atom$ $O_{1}-C_{22}-C_{21}$ $O_{2}-C_{12}-C_{11}$ $O_{2}-C_{13}-C_{14}$ $O_{3}-C_{14}-C_{13}$ $O_{4}-C_{15}-C_{16}$ $O_{4}-C_{16}-C_{15}$	bond angle 109.03(0) 108.10(0) 106.64(0) 107.08(0) 106.97(0) 108.15(0)
atom $S_{1} - C_{1} - N_{1}$ $S_{2} - C_{2} - N_{2}$ $S_{3} - C_{3} - N_{1}$ $S_{4} - C_{4} - N_{4}$ $C_{11} - O_{1} - C_{22}$ $C_{12} - O_{2} - C_{13}$ $C_{14} - O_{3} - C_{15}$	bond angle 178.06(0) 177.59(0) 178.16(0) 175.15(0) 114.75(0) 108.20(0) 106.92(0)	$atom$ $O_{1}-C_{22}-C_{21}$ $O_{2}-C_{12}-C_{11}$ $O_{2}-C_{13}-C_{14}$ $O_{3}-C_{14}-C_{13}$ $O_{4}-C_{15}-C_{16}$ $O_{4}-C_{15}-C_{15}$ $O_{4}-C_{17}-C_{18}$	bond angle 109.03(0) 108.10(0) 106.64(0) 107.08(0) 106.97(0) 108.15(0) 108.77(0)
atom $S_{1} - C_{1} - N_{1}$ $S_{2} - C_{2} - N_{2}$ $S_{3} - C_{3} - N_{3}$ $S_{4} - C_{4} - N_{4}$ $C_{11} - O_{1} - C_{22}$ $C_{12} - O_{2} - C_{13}$ $C_{14} - O_{3} - C_{15}$ $C_{16} - O_{4} - C_{17}$	bond angle 178.06(0) 177.59(0) 178.16(0) 175.15(0) 114.75(0) 108.20(0) 106.92(0) 115.51(0)	atom $O_{1}-C_{22}-C_{21}$ $O_{2}-C_{12}-C_{11}$ $O_{2}-C_{13}-C_{14}$ $O_{3}-C_{14}-C_{13}$ $O_{4}-C_{15}-C_{16}$ $O_{4}-C_{15}-C_{15}$ $O_{4}-C_{15}-C_{15}$ $O_{5}-C_{15}-C_{17}$	bond angle 109.03(0) 108.10(0) 106.64(0) 107.08(0) 106.97(0) 108.15(0) 108.77(0) 105.49(0)
atom $S_{1} - C_{1} - N_{1}$ $S_{2} - C_{2} - N_{2}$ $S_{3} - C_{3} - N_{3}$ $S_{4} - C_{4} - N_{4}$ $C_{11} - O_{1} - C_{22}$ $C_{12} - O_{2} - C_{13}$ $C_{14} - O_{3} - C_{15}$ $C_{14} - O_{4} - C_{15}$ $C_{18} - O_{5} - C_{14}$	bond angle 178.06(0) 177.59(0) 178.16(0) 175.15(0) 114.75(0) 108.20(0) 106.92(0) 115.51(0) 112.29(0)	atom $O_{1}-C_{22}-C_{21}$ $O_{2}-C_{12}-C_{11}$ $O_{2}-C_{13}-C_{14}$ $O_{3}-C_{14}-C_{13}$ $O_{4}-C_{15}-C_{16}$ $O_{4}-C_{15}-C_{15}$ $O_{4}-C_{17}-C_{18}$ $O_{5}-C_{19}-C_{17}$	bond angle 109.03(0) 108.10(0) 106.64(0) 107.08(0) 106.97(0) 108.15(0) 108.77(0) 105.49(0) 110.64(0)
atom $S_{1} - C_{1} - N_{1}$ $S_{2} - C_{2} - N_{2}$ $S_{3} - C_{3} - N_{3}$ $S_{4} - C_{4} - N_{4}$ $C_{11} - O_{1} - C_{22}$ $C_{12} - O_{2} - C_{13}$ $C_{14} - O_{3} - C_{15}$ $C_{16} - O_{4} - C_{17}$ $C_{18} - O_{5} - C_{19}$ $C_{20} - O_{6} - C_{31}$	bond angle 178.06(0) 177.59(0) 178.16(0) 175.15(0) 114.75(0) 108.20(0) 106.92(0) 115.51(0) 112.29(0) 110.53(0)	$atom$ $O_{1}-C_{22}-C_{21}$ $O_{2}-C_{12}-C_{11}$ $O_{2}-C_{13}-C_{14}$ $O_{3}-C_{14}-C_{13}$ $O_{4}-C_{15}-C_{16}$ $O_{4}-C_{15}-C_{15}$ $O_{4}-C_{15}-C_{15}$ $O_{5}-C_{16}-C_{17}$ $O_{5}-C_{16}-C_{17}$ $O_{5}-C_{16}-C_{19}$	bond angle 109.03(0) 108.10(0) 106.64(0) 107.08(0) 106.97(0) 108.15(0) 108.77(0) 105.49(0) 110.64(0) 105.84(0)
atom $S_{1} - C_{1} - N_{1}$ $S_{2} - C_{2} - N_{2}$ $S_{3} - C_{3} - N_{3}$ $S_{4} - C_{4} - N_{4}$ $C_{11} - O_{1} - C_{22}$ $C_{12} - O_{2} - C_{13}$ $C_{14} - O_{3} - C_{15}$ $C_{16} - O_{4} - C_{15}$ $C_{18} - O_{5} - C_{19}$ $C_{20} - O_{6} - C_{51}$ $O_{1} - C_{11} - C_{12}$	bond angle 178.06(0) 177.59(0) 177.59(0) 178.16(0) 175.15(0) 114.75(0) 108.20(0) 106.92(0) 115.51(0) 112.29(0) 110.53(0) 114.09(0)	$atom$ $O_{1}-C_{22}-C_{21}$ $O_{2}-C_{12}-C_{11}$ $O_{2}-C_{13}-C_{14}$ $O_{3}-C_{14}-C_{13}$ $O_{4}-C_{15}-C_{16}$ $O_{4}-C_{15}-C_{15}$ $O_{5}-C_{15}-C_{17}$ $O_{5}-C_{15}-C_{17}$ $O_{5}-C_{16}-C_{20}$ $O_{6}-C_{20}-C_{19}$	bond angle 109.03(0) 108.10(0) 106.64(0) 107.08(0) 106.97(0) 108.15(0) 108.77(0) 105.49(0) 110.64(0) 105.84(0) 107.61(0)

表 3 鐵角数据(°) Table 3 Bond Angles

最小二乘平面方程形式

Ax + By + Cz - D = 0

表 4 分子中的几个最小二乘平面及二面角

Table 4 Several Least-Square Planes and Dihedral Angles between Planes

plane	АВС Д	atom	x	y	z	distance(Å)
1	-0.3921 -0.0462	0,	- 0.3000	1.8359	7.6736	- 0.196
	-0.9188 - 6.8213	O 2	2.1600	1.3740	6.2511	0.167
		Ο,	3.8553	3.4803	5.8072	- 0.186
		O ₄	2.8016	6.0195	5.6830	0.221
		Ο,	0.4091	6.6158	7.1892	-0.250
		0.	-1.3764	4.4443	7.5256	0.241
	other atom	NII	1.6334	3,9506	7.5544	-0.912
2	-0.3758 - 0.0400	O 2 1	6.6191	6.0570	19.1793	0.316
	-0.9258 - 20.5957	O 2 2	4.4558	5.0220	20.9614	-0.285
		0,1	3.8091	2.2694	20.6005	0.182
		O 2.4	6.0617	0.5322	19.9311	-0.115
		0,,	8,3452	1.7583	18.7717	0.150
		O 2 6	8.7975	4.3717	19.1329	- 0.249
	other atom	N 2 2	5.9140	3.3277	18.9342	0.976
3	0.0465 0.6302	Λg_1	5.4026	3.6650	13.4632	0.009
	-0.7750 -7.8820	S₄	3.5411	5.1163	14.5792	- 0.009
		Λg_2	1.8026	3.7119	13.2853	0.009
		S ,	3.6523	2.1932	12.1842	- 0.009
	other atom	N _{t1}	1.6334	3,9506	7.5514	4.593
		N 2 2	5.9140	3.3277	18.9342	- 4.420
		N 3	3.5537	3.4277	9.6816	2.701
		N 4	3.7534	3.8514	17.0378	-2.721
4	0.0070 - 0.8724 - 0.4887 - 0.7045	S_1	0.5676	4.7001	11.2949	0.088
	-0.1887 -9.7015	Ag ₂	1.8026	3.7119	13.2853	- 0.014
		N 2	9.2249	2.8461	11.5154	0.178
		N 1	6.9725	1.5072	12.1571	-0.120
		Ag ₁	5.4026	3.6630	13.4632	- 0.035
		S 2	6.6214	2.6267	15.1611	- 0.097
	other atom	N 1 1	1.6331	3.9506	7.5541	2.577
		N 2 2	5,9140	3.3277	18.9342	-2.411
		N 3	3.5537	3.4277	9.6816	1.995
_		N 4	3.7534	3.8514	17.0378	- 1.930
5	0.9975 $0.0652- 0.0289 3 4629$	N 3	3.5537	3.1277	9.6816	0.026
	0.0200 0.1029	C 3	3.5909	2.9483	10.7017	0.002
		S ₃	3.6523	2.1932	12.1842	- 0.029
		N₄	3.7534	3.8514	17.0378	0.010
:		C 4	3.6222	4.4356	16.0151	- 0.023
1	. 1	S ₄	3.5411	5.1463	14.5792	- 0.016
	other atom	N 1 1	1.6334	3.9506	7.5544	- 1.791
		N 2 2	5.9140	3.3277	18.9342	2.106

plane	A	В	С	D	atom	x	y	z	distance(Å
5					Agi	5.4026	3.6650	13.4632	1.776
					Ag ₂	1.8026	3.7119	13.2853	- 1.806

续表 4

表 5

平面间的夹角(^)

Table 5 Angles	between	Planes
----------------	---------	--------

plane	angle	plane	angle
1-2	5.0	2-4	65.5
13	48.3	2-5	110.2
14	60.9	3-4	99.8
1-5	111.6	35	83.7
23	43.5	45 ·	92.0

结果与讨论

测定结果表明:18-冠-6 与铵离子配位形成配阳离子,铵离子上氮原子离二个冠醚醚 氧最小二乘平面距离分别为0.942Å和0.976Å, 氮离醚上氧原子平均距离分别为2.96Å 和2.98Å。如果把铵离子做为一个整体阳离子,则可以说它们之间以离子一偶极键作用 相结合,但主要以交叉氢键相结合。

在配阴离子中,中心原子银是四配位,*sp*³ 杂化成键,近似于正四面体。有趣的是 硫氰酸根离子与银的氮、硫杂配及银离子通过硫成桥形成一种链式结构(见图2),这在银 的配位化学上是比较新颖的。链是由四元环和八元环组成的环扣。两环最小二乘平面夹 角为99.8°,银与硫氰酸根中硫、氮的配位空间并不是正四面体,而是有些形变。由于 环的形成和二个冠醚配阳离子的空间影响,造成Ag-S-C键角的很大弯曲。

18-冠-6 铵配阳离子与硫氰酸银配阴离子以静电力结合,另一方面硫氰酸根上氮原 子离铵离子上氮原子距离分别为N₃-N₁₁ 2.913Å、N₄-N₂₂ 2.922Å,在氢键形成距离 范围内,可以认为有氢键存在。

致谢:我们感谢南开大学王宏根、姚心侃、王如骥同志对本文工作的支持和协助。

参考文献

[1] Pederson, C.J., J. Amer. Chem. Soc., 89, 7017(1967).

[2] Christensen, J.J.et al., Chem. Rev., 74, 351(1974).

(3) Frensdorff, II.K., J. Amer. Chem. Soc., 93, 600(1971).

〔4〕樊悦朋等,科学通报,2,107(1985)。

CRYSTAL AND MOLECULAR STRUCTURE OF 18-CROWN-6 AMMONIUM WITH SILVER(1) THIOCYANATE COMPLEX

Du Gaoying Zhang Wenxing Fan Yuepeng

(Department of Chemistry, Shandony University, Jinan)

This paper reports on the coordination compound grown in a gel by reaction of 18-crown-6 with silver nitrate and ammonium thiocyanate. On a ENRAF-NONIUS CAD4 four circle diffractometer, 2461 visible intensity data were obtained. The structure of the crystal was solved by Patterson method and Fourier synthesis, and then it was refined by the fullmatrix least square method to final discrepancy factors R = 0.072 and Rw= 0.081. The crystal belongs to the monoclinic system and the space group is P_{24}/n with cell parameters: $a = 9.032(2) \frac{\Lambda}{A}$, $b = 14.243(4) \frac{\Lambda}{A}$, c = $35.092(6) \frac{\Lambda}{A}$, $\beta = 105.5^{\circ}$, z = 4. The calculated density of crystal is D_{cal} . $= 1.546 \text{ g/cm}^3$. The chemical formula of the crystal is $[(NH_4)(18C6)]_2$ $(Ag_4(SCN)_4)$. Its composition was determined by elemental analysis and X-ray structure analysis.

The result of crystal structure analysis shows that in the crystal complex 18-crown-6 coordinates with ammonium and silver(I) coordinates with thiocyanates. The $((NH_4)(18C6))_2^+$ ion and $(Ag_2(SCN)_4)^{2-}$ ion are combined with electronic force and N-H…N hydrogen bond force. The center atom silver forms a high polymer chain by sulfur bridge and sulfur -nitrogen mixing coordination.

Keywords crown ether complex silver complex

42