研究简报

二吡啶四硝基酞菁钴 的合成及光谱—电化学性质研究

吴星 胡效亚

(扬州师范学院化学系)

本文报道了以钼酸铵为催化剂,将 4 一硝基邻苯二甲酸酐、脲和氯化铵混合,于220℃加热合成四硝基酞菁钴,将此配合物溶于吡啶,于115℃加热反应 6 天合成了二吡啶四硝基酞菁钴配合物。并对二吡啶四硝基酞菁钴的氧化还原半波电势、电解氧化还原产物的电子吸收光谱进行了研究。

关键词。钴 四硝基酞菁 合成 光谱一电化学

近年来,对于酞菁钴、磺化酞菁钴、烷基、烷氧基酞菁钴的合成及 结构、光谱、电化学等性质已经进行了较广泛的研究 (1,2)。而对四硝基酞菁钴及其衍生物的研究报导则比较少见。笔者采用新的方法合成了二 吡 啶 四 硝 基 酞 菁 钴 配 合物 (简写成: (CoTNPc(py)2),并对其光谱一电化学性质进行了研究。

实验部分

本实验所用试剂除吡啶, DMF(N,N一二甲基甲酰胺) 经蒸馏去水处理外, 其余 试剂均为分析纯。循环伏安扫描实验由XFD-8型超低频信号发生器配合 JHC1型晶体管恒电位仪进行,扫描曲线用LZ3-204函数记录仪绘制。半波电势由 JP-1A型示波极谱仪测定。电子吸收光谱由日本岛津UV-240紫外可见分光光度计测定。

一、CoTNPc(py)。的合成

将 4 - 硝基邻苯二甲酸酐(0.04 mol) 与脲 (0.18 mol)、 $CoCl_2(0.01 mol)$ 、 NH_4Cl (0.04 mol)及钼酸铵(0.05g) 均匀混和, 在搅拌下缓慢加热至 220 °C 并保持 3 小时, 冷却, 将反应混合物分别在100 ml H_2O 、250 ml 1N HCl、300 ml 1N NaOH中煮沸 2 小时, 用水洗至中性后再分别用甲醇、乙酐交替洗涤,抽滤, 90 °C 真空干燥得四硝基酞菁钴6.5g,产率80.1%。 在25 ml 吡啶中加入0.38g四硝基酞菁钴, 在搅拌下于115 °C 反应6 天,抽滤,以少许吡啶、甲醇洗涤,真空干燥得 $CoTNPc(py)_2$ 0.23g,产率51% $CoTNPc(py)_2$ 为兰绿色固体,不溶于水、乙醇、 乙醚等, 可溶于DMF、 DCB (邻二

氯苯)、α-氯萘。

二、CoTNPc(py)2的电化学性质测定

循环伏安法以铂丝(面积1.2×10⁻³cm²)为工作、辅助电极,饱和甘汞电极为参比电极, 电势值以二茂铁为标准物质进行校正(+0.16V, 相对于饱和甘汞电极⁽⁴⁾)。 扫描速度为100mV/s。 **极谐法测定半波电势分别是铂丝、滴**汞、饱和甘汞电极为辅助、工作、参比电极。以上实验所用溶液为含2×10⁻⁴M CoTNPc(py)₂、0.100M NaClO₄的DMF。

三、光谱一电化学性质测定

在自制电解池中(工作电极与辅助电极、参比电极之间用烧结玻璃隔开),以铂片(面积100mm²)为工作电极,铂丝、饱和甘汞电极分别为辅助、参比电极,恒定电压电解CoTNPc(py)₂的DMF溶液,并立即测定其电解产物的电子吸收光谱。

CpTNPc(py)。的电化学、光谱一电化学性质测定均在氮气气氛中进行。

结果与讨论

一、电化学性质

图 1 给出了CoTNPc(py)。的循环伏安扫描曲线,半波电势值列于表 1,并与极谱 法所测半波电势进行了比较。 从图 1 中可以看出在 - 1.8—+1.2 V范围内有四个单电子 氧化还原峰, 这与四磺酸基酞青钴在吡啶溶液中的电化学行为相类似(5)。 将表 1 中的 数据与四苯基卟吩钴的半波电势(6)比较发现: CoTNPc(py)。在 DMF 溶液中的四个氧化还原峰 分 别 对应于 TNPc(1-)/TNPc(2-)、 Co(3+)/Co(2+)、 Co(2+)/Co(1+)、 TNPc(2-)/TNPc(3-)四组物质的氧化还原过程。

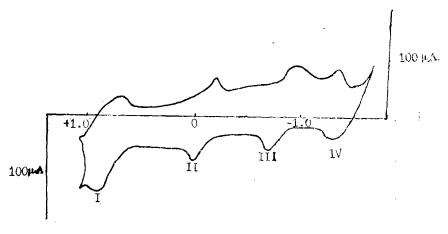


图 1 CoTNPc(py)。循环伏安扫描曲线 (0.10M NaClO₄+DMF)

Fig 1 Scanning curve of cyclic voltammetry for CoTNFc(py).

(0.10M NaClO₄ + DMF)

表 1 CoTNPc(py), 的氧化还原半波电势(相对于甘汞电极)

Table 1 Half-Wave Potentials of Oxidation-Reduction of CoTNPc(py)₂ (Hg/Hg₂Cl₂ reference)

	*E ₁ / ₂ (cyclic voltammetry)	**E ₁ / ₂ (polarography)		
I	0.71			
I	0.08	0.052		
N	-0.92	-0.90		
N.	-1.40	-1.45		

^{*} $E_{1/2} = (E_{ox} + E_{e})/_{2}$; ** $E_{1/2} = E_{Pe} + 1.109 \frac{RT}{nF}$

二、光谱一电化学性质

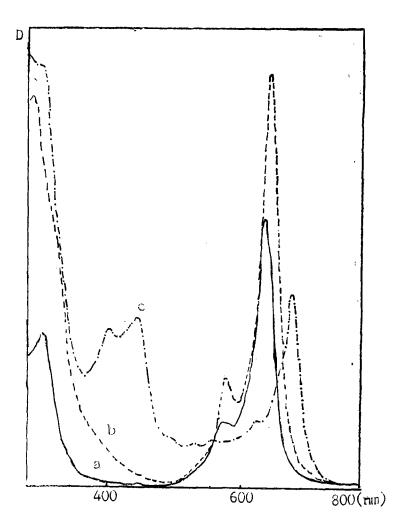

电解氧化CoTNPc(py)₂的DMF溶液在15分钟后溶液由绿色转变成兰色,其光谱见图 2a,特征吸收波长列于表 2。与 Co(II) TNPc(py)₂ 的电子吸收光谱相比较, 其 氧化产物在 670nm 附近的吸收明显增强且有 4 — 8 nm 红移,在近紫外区的吸收也增强很多, 其变化规律与 CoPc(py)₂ 相吻合 ⁽⁷⁾, 其电子吸收光谱与 Co(II) (CN)₂ Pc 的 电子吸收光谱基本一致 ⁽⁸⁾。说明在此条件下 Co(II) TNPc(py)₂ 已 被 氧 化 成 Co(III) TNPc(py)₂。

表 2 CoTNPc(py) 2 的电子吸收光谱最大值

Table 2 Maxima of Electronic Absorption Spectrum for CoTNPc(py)₂, λ_{max}

No.	electrolytic potential	olytic ial λ _{m,ix} (nm)			
a	+1.2V	314	375	600	670
ь	0 V	328	430	596	664
С	-2.0V	310	330	422	464
		520	600	635	694

当 $CoTNPc(py)_2$ 在TMF溶液中被控制电压还原时,经30分钟后溶液由绿色转变成 黄色(其电子吸收光谱见图 2 中 c ,特征吸收波长亦列于表 2)。增加电解时间仍观察不到CoTNPc被电解还原得到的紫色出现 C^8)。从图 2 中可以看出 $Co(\mathbf{I})TNPc(py)_2$ 的还原产物在470nm处有较强的吸收,对应于 $Co(\mathbf{I})$ 的。 $\mathbf{g}(d\mathbf{x}^2-\mathbf{y}^2,d\mathbf{z}^2)$ 轨道向酞菁配体的 $\pi^*(1b_{1u})$ 轨道的电荷转移 $C^{(10)}$,比较 $CoTNPc(py)_2$ 还原产物在 470、422、694nm处吸收的相对强弱可以看出 $Co(\mathbf{I})TNPc(py)_2$ 的电解还原产物为 $Co(\mathbf{I})TNPc(2-)(py)_2$ 和 $Co(\mathbf{I})TNPc(3-)(py)_2$ 的混合物 $C^{(11,8)}$ 。

参考文献

- [1] Yang, C.H., Lin, S.F., Chang, C.T., Inorg. Chem., 19(11), 3541 (1980).
- [2] Bernauer, K., Fallab, S., Helv. Chim. Acta, 44, 1287(1961).
- [3] Metz, J., Schneider, O., Hanack, M., Inorg. Chem., 23, 1065(1984).
- [4] Gagne, R.R., Koval, C.A., Lisensky, D.C., Inorg. Chem., 19, 2854 (1980).
- [5] Lever, A.B.P., Minor, P.C., J. Electroanal. Chem., 196, 339(1985).
- [6] Walker, F.A., Beroiz. D., Kadish, K.M., J.Am. Chem. Soc., 98, 3484

(1976).

- [7] Assour, J.M., J.Am. Chem. Soc., 87, 4701 (1965).
- [8] Day, P., Hill, H.A.O, Price, M.G., J. Chem. Soc., A, 90(1968).
- [9]吴星、李令军、马晓群,杨州师范学院学报(自然科学版), 1, (1987).
- [10] Rollmann, L.D., Iwamoto, R.T., J. Amer. Chem. Soc., 90(6), 1455(1968).
- [11] Clack, D.W., Yandle, J.R., Inorg. Chem., 11(8), 1738(1972).

SYNTHESIS AND SPECTRO-ELECTROCHEMICAL STUDY OF COMPLEXES OF TETRANITROPHTHA-LOCYANINATO BIS(PYRIDINE) COBALT(I)

Wu Xing Hu Xiaoyia

(Department of Chemistry, Yangzhou Teachers' College)

Tetranitrophthalocyaninato cobalt (I) (CoTNPc) was synthesised by mixing 4-nitrophthalic anhydride with urea, cobalt (I) chloride, ammonium chloride and ammonium molybdate and heating the mixture at 220°C for 3 hrs. Under stirring CoTNPc reacts with pyridine for 6 days at temperatures 115°C and the tetranitrophthalocyaninato bis (pyridine) cobalt (I) (CoTNPc(py)₂) was obtained.

In order to study the properties of CoTNPc(py)₂, the half-wave potential and UV/vis spectra for the electrolytic products of oxidation-reduction of CoTNPc(py)₂ were measured respectively.

Keywords cobalt (I) tetranitrophthalocyanine synthesis spectroelectrochemistry