铕(Ⅲ)的β-双酮-邻菲绕啉混配 配合物的合成、晶体结构和红外光谱

王加赋 章士伟 吴瑾光 陈 滇 徐光宪

(北京大学化学系)

合成 丁 1,3-二 苯 基-4 -乙酰吡 唑 酮 -5[H])PAP= $C_{17}H_{14}N_2O_2$] 邻准绕啉 [phen= $C_{12}H_8N_2$]配箔的混配合物 Eu(DPAP),·(o-phen), 并测定、讨论其晶体 结构和150—4000cm⁻¹范围的红外光谱。

晶体Eu(DPAP),(o-phen)属单斜晶系;空间群为 C⁶₂n-C2/c; Z=8;晶胞参数 a=23.021(15)Å, b=22.988(11)Å. c=23.549(9)Å, β =109.27(4)°, V= 11761(10)Å'; F(000)=1527.09, μ =11.28cm⁻¹(Mo靶)。

关键词: 销β---双酮邻菲绕啉螯合物 合成 结构 红外光谱

引 言

 β —双酮的希土配合物,由于具有实际用途⁽¹⁻²⁾,近些年发展很快⁽³⁾。文献曾报道 过 Eu(acac)₃·(*o*-phen)⁽⁴⁾的晶体结构。本文用合成的新配体 HDPAP(HDPAP 系 1,3—二苯基-4-乙酰吡唑酮-5的英文名称缩略,分子式为C₁₇H₁₄N₂O₂]制备了单晶 体Eu(DPAP)₃(*o*-phen),测定并讨论其晶体结构和150—4000cm⁻¹的红外光谱。

一、单晶的制备

按摩尔比 1:3 量取EuCl水溶液,称取配体(HDPAP)。用计算量NH₃·H₂O 溶解 HDPAP,得到NH₄⁺DPAP⁻水溶液,将此溶液往EuCl₃溶液中滴加,马上析出白色沉 淀,温热,陈化,过滤。沉淀水洗三次,用乙醇—水混合溶剂重结晶二次,得到组成为 Eu(DPAP)₃·EtOH·3H₂O⁽¹⁶⁾的黄色晶体。

以Eu(DPAP)₃·EtOH·3H₂O:*o*-phen=1:1.01比例称取原料,在热乙醇--水介质 中反应,室温静置--周后出现橙黄色的方块状单晶,晶体在空气中稳定。熔点162--163℃。 单晶组成为Eu(DPAP)₃·(*o*-phen): C%=65.27(64.95),H%=4.10(4.04),N%= 9.70(9.62), Eu%=13.1(13.1); 括号内数值系计算值。

二、结构测定,数据及其讨论

用钼靶 K_a 对晶体进行衍射,仪器为NicoletR 3 四屆衍射仪。在2 θ 角为 0—41.8°范

本文于1986年12月18日收到。

3 卷

围内,用每分钟5.86—29.3°的速度进行变速扫描。选取两条衍射作为标准衍射,每间 隔100个衍射扫描一次,以作为统一强度的标度。收到5918个独立衍射点,这些衍射点 经过经验吸收校正和PL校正,其中 $F_0>3\sigma$ 的可观察衍射点4900个。先用Patterson方 法确定重原子Eu的位置,然后用富里埃合成法确定其他非氢原子的位置。

462

解得初结构后,用最小二乘法进行十二轮精修。R = 0.0678, $R_w = 0.0619$ 。

a = 23.021(15)Å $\beta = 109.27(4)^{\circ}$	b = 22.988(11) Å F(000) = 4527.00	c = 23.549(9)Å μ = 11.28cm ⁻¹ (Mo target
symmetry class:mo	noclinic space group	$: C_{2h}^{6} - C_{2/c}^{2}$
$V = 11764(10)({ m \AA})^3$	R = 0.0678	$R_{\rm w} = 0.0619$
$d_{\rm max} = 1.31 {\rm g}/({\rm cm})^3$	$d_{caled} = 1.32 {\rm g/c}$	$(cm)^3$ $Z = 8$

,

由图1可见铕的配位数是八。三个 DPAP提供六个配位氧原子、邻菲绕啉 提供二个配位氮原子。 β —双酮由于有 三个同时与Eu配位,因而分别用A,B, C加以区别。配体A和C的配位原子构 成的四边形O₁O₂O₅O₆与B配体和邻菲 绕啉的配位原子构成的四边形O₃O₄N₇ N₈互相错开,形成一扭曲的四方反棱 柱体,如图2所示。

吡唑环的氮原子上的苯基平面同吡 唑环平面的交角较小:配体A中为16.5 度,配体B中为4.0度,配体C中为8.8 度。C-N键键长约为1.41Å,比正常单 键键长1.479Å⁽⁵⁾短,有一定程度的共 轭,吡唑环与苯基形成大离域π键。陈 民勤等⁽⁶⁾在研究MoO₂(PMBP)₂结 构时得到类似的结论。

在配体A和B中尽管连接在吡唑环的-3位碳原子上的苯基平面同吡唑环平面的两面 角较大,分别为53.9度和56.4度,但是吡唑环的-3位碳原子和苯基却是在同一平面上, 并且连接苯基和吡唑环的键 C_6-C_6 和 $C_{22}-C_{23}$ 键长分别为 1.470 ± 0.020 Å 和 $1.454\pm$ 0.018 Å,比正常单键键长 1.53 ± 0.01 Å (5) 短而与共轭分 子丁二烯 中的 C_2-C_3 键 长 1.48 Å (7)相当。因此,配体A和B中连在吡唑环的-3 位碳原子上的苯基同吡唑环有一

Fig. 3 Sketch of DPAP(A) chelate to Eu

学

定程度的共轭。而键C₃g-C₄0键长为1.533±0.023Å,是正常单键,故配体C中-3位上 苯基同吡唑环不存在共轭效应。另外, 配体A和B同Eu螯合所形成的螯环共轭 程度较高,键C₄-O₂与C₂-O₁、O₂-Eu与O₁-Eu、C₂1-O₄与C₁g-O₃、O₄-Eu与O₃-Eu的键长 彼此相近;而配体C同Eu的螯环的共轭程度却较低,导致键C₃g-O₆(1.293Å)比C₃g-O₅(1.239Å)长、O₈-Eu(2.307Å)比O₅-Eu(2.446Å)短。总而言之:在Eu(DPAP)₃·(o-phen)中三个β-双酮是不等同的——配体A和B配位后共轭程度较高而C则共轭程 度最低。

表 2 非氢原子的分数坐标和热振动参数

Table 2 Fractional Coordinates and Anisotropic Thermal Parameters for

Nonhydrogen Atoms

atom	$X/A \times 10^4$	$Y \setminus B \times 10^4$	$Z/C \times 10^4$	$U \times 10^{3}$
Eu	2179(1)	658(1)	62(1)	40(1)
O 4	1252(4)	731(4)	269(4)	46(4)
O 5	2977(4)	1177(4)	-212(4)	54(4)
O 1	2360(4)	1436(3)	774(4)	48(4)
O 6	2902(4)	-1(3)	-24(4)	53(4)
O 2	2538(4)	249(3)	1034(3)	46(4)
O 3	1734(4)	-287(4)	- 85(4)	47(4)
N 7	1711(5)	1576(4)	- 588(4)	42(5)
N 8	1625(5)	488(4)	- 1089(5)	50(5)
N 6	3583(4)	- 490(4)	- 103(4)	18(5)
C 19	1397(5)	- 581(5)	140(5)	40(5)
N 4	615(5)	409(4)	817(4)	45(5)
N 3	438(5)	101(4)	1022(4)	30(5)
C 58	998(6)	867(7)	-2085(6)	56(7)
C 62	823(7)	1915(7)	-2226(6)	65(7)
C 63	727(7)	1373(7)	-2451(6)	70(8)
C 57	1354(6)	933(6)	-1454(6)	49(6)
C 20	1082(6)	-297(5)	493(5)	39(6)
C 21	1022(6)	331(6)	498(6)	38(6)
C 29	394(6)	940(6)	971(6)	47(6)
N 1	2346(5)	422(5)	2444(5)	54(6)
C 23	629(6)	-1126(5)	973(5)	40(6)
C 47	3111(7)	-1222(6)	50(6)	58(7)
C 3	2283(6)	1010(5)	1637(5)	41(6)
C 4	2438(6)	438(6)	1493(6)	42(6)
C 24	1140(7)	-1462(6)	1269(6)	54(7)
C 38	3305(6)	11(5)	-299(5)	45(6)
C 30	526(6)	1474(5)	760(6)	56(7)
N 5	3998(5)	- 343(5)	- 698(5)	57(6)
C 6	2041(6)	1367(5)	2616(5)	48(6)
C 52	1783(6)	2103(5)	- 361(6)	50(6)
N 2	2185(5)	95(4)	1994(4)	48(5)
C 22	720(6)	- 525(5)	826(5)	41(6)
C 5	2240(6)	948(6)	2245(6)	45(6)
C 2	2303(6)	1492(5)	1278(6)	43(6)
C 28	49(7)	- 1374(6)	813(6)	53(7)
C 18	1345(6)	- 1203(5)	-9(6)	53(6)
C 25	1053(8)	-2059(7)	1380(6)	71(8)

...`

健事 2

atom	$X/A \times 10^4$	$\rm Y \slash B \ \times 10^{4}$	$Z/C \times 10^4$	$U \times 10^{3}$
C 55	1105(7)	1996(6)	- 1583(7)	54(7)
C 11	1494(6)	1654(6)	2404(6)	53(6)
C 48	3105(7)	-1790(6)	248(7)	68(7)
C 39	3969(6)	208(7)	-765(6)	52(7)
C 56	1414(6)	1515(6)	- 1197(6)	47(7)
C 61	1579(7)	-51(6)	-1330(7)	66(7)
C 36	3377(6)	1052(5)	-438(6)	50(6)
+ C 59	942(7)	-2971(7)	-2323(7)	70(8)
C 54	1253(6)	2550(6)	· 1322(6)	56(7)
C 10	1303(7)	2026(6)	2781(7)	61(8)
C 32	-63(6)	1957(7)	1298(7)	83(8)
C 33	- 192(3)	1107(7)	1491(7)	73(8)
C 10	4365(6)	505(7)	1093(6)	67(7)
C 26	479(7)	-2290(6)	1223(6)	71(8)
C14	2945(7)	-1419(6)	1841(7)	74(8)
C 1	2276(7)	2107(5)	1498(6)	60(7)
C 27	-24(8)	- 1964(7)	928(7)	70(8)
C 41	4973(8)	548(12)	- 862(7)	173(11)
C 16	2526(7)	-1376(6)	2629(7)	71(7)
C 49	3488(7)	-2197(6)	176(6)	67(7)
C 46	3534(6)	-1064(5)	-210(6)	51(6)
С 9	1643(7)	2113(7)	3357(6)	76(8)
C 17	2431(6)	-767(6)	2553(6)	58(7)
C 34	19(7)	913(7)	1347(7)	63(7)
C 42	5316(11)	824(14)	-1160(9)	211(18)
C 51	3943(7)	-1491(6)	-276(7)	70(8)
C 53	1585(7)	2013(6)	-714(7)	58(7)
C 8	2199(8)	1804(7)	3579(7)	95(9)
C 12	2590(6)	500(5)	2087(6)	46(6)
C 37	3545(6)	477(5)	- 524(6)	38(6)
C 15	2779(7)	- 1696(7)	2279(7)	70(8)
C 50	3908(8)	- 2065(6)	- 89(7)	85(8)
C 7	2390(8)	1151(6)	3318(6)	76(8)
C 31	290(7)	1981(7)	922(6)	73(7)
C 13	2843(7)	- 829(6)	1734(7)	58(7)
C 60	1218(8)	-161(7)	1966(6)	76(8)
C 35	3720(7)	1560(6)	- 598(8)	91(9)
C 13	5060(13)	1070(12)	- 1676(8)	162(16)
C 45	4134(9)	750(12)	- 1620(9)	178(16)
C 44	4468(12)	1040(19)	-1900(12)	254(26)

.

,

Table 3 Chemical Bond Lengths					
bond leng	;th(Å)	bond lengt	th(Å)	bond lengt	h(Å)
Eu-O 1	2.345(9)	C 48-C 19	1.332(22)	N 8 - C 61	1.352(18)
Eu— O 1	2,388(8)	C 39-C 37	1.423(22)	C 20 C 21	1.419(21)
Eu O 2	2.354(8)	C 36—C 37	1.409(18)	C 29 C 34	1.424(24)
Eu-N 7	2.617(9)	C 59—C 60	1.363(21)	N 1 - N 5	1.289(17)
O 5 — C 36	1.239(19)	C10—C9	1.336(20)	C 2 3 C 2 2	1.454(18)
O 6 — C 38	1.393(18)	C 32— C 31	1.388(21)	C 47— C 48	1.386(29)
O 3 — O19	1.269(17)	C 10-C 41	1.325(23)	C 3 – C 4	1.432(19)
N 7 - C 56	1.376(16)	C 26—C 27	1.361(21)	C 3-C 2	1.401(18)
N 6 - N 5	1.396(18)	C 14-C 13	1.384(19)	C 24—C 25	1.423(21)
C 19 C 20	1.127(20)	C 16-C 17	1.418(20)	C 30—C 31	1.401(21)
N 4 — N 3	1.379(15)	C 49 C 50	1.347(26)	C 6 - C 5	1.470(20)
N 4 — C 29	1.111(18)	С 9 — С 8	1.404(23)	С 6 — С 7	1.392(16)
C 58-C 63	1.457(21)	C 42—C 43	1.290(29)	C 52—C 53	1.418(18)
C 58-C 59	1.412(22)	C 8-C 7	1.348(25)	C 28-C 27	1.403(22)
C 62-C 55	1.468(19)	C 43 C 44	1.291(38)	C 55—C 56	1,423(19)
C 57-C 56	1.454(20)	Eu— O 5	2.446(19)	C 11-C 10	1.402(23)
C 20-C 21	1.448(18)	Eu—06	2.306(8)	C 39—C 40	1.533(23)
C 29 C 30	1.393(20)	Eu— O 3	2.374(8)	C 61-C 60	1.472(19)
N 1 N 2	1.419(17)	Eu— N 8	2.613(10)	C 36-C 35	1.523(22)
C 23-C 24	1.385(18)	O 4 C 21	1.265(17)	C 54-C 53	1.388(19)
C 23-C 28	1.384(20)	O1-C2	1.240(17)	C 32—C 33	1.404(23)
C 47-C 46	1.361(23)	02-04	1.254(18)	C 33— C 34	1.324(23)
C 3-C 5	1.474(20)	N 7 — C 52	1.309(15)	C 40-C 45	1,306(26)
C 4 – N 2	1.392(18)	N 6 — C 38	1.377(17)	C14-C15	1.371(25)
C 38—C 37	1.386(19)	N 6 — C 46	1.411(16)	C 41-C 42	1.371(35)
N 5-C 39	1.273(19)	C 19—C 18	1.466(17)	C 16-C 15	1.367(24)
C 6 - C 11	1.360(18)	N 4 C 21	1.393(20)	C 46-C 51	1.400(21)
N 2 - C 12	1,391(16)	N 3 - C 22	1.333(18)	C 17-C 12	1.407(22)
$C^2 - C_1$	1.514(18)	C 58-C 57	1.447(17)	C 51-C 50	1.399(21)
$C_{25} - C_{26}$	1.354(22)	C 62 - C 63	1.343(22)	$\begin{array}{c} C 12 - C 13 \\ C 15 - C 14 \end{array}$	1.384(22)
C 22C 24	1.088(20)	C 3/ N 0	1.048(10)	U 4 5 U 4 4	1.304(44)

2

表3 键 长 Table 3 Chamical Bond L

lable 4 Selected Chemical Bond Angles						
bond angle(°)		bond angle(°)			
O 4 — Eu—O 5	146.4(3)	O 5 — Eu—O 1	8].4(3)			
O 5 — Eu—O 6	70.8(3)	O 4 — Eu—O 2	83.0(3)			
O1-Eu-O2	72.2(3)	O4-Eu-O3	73.6(3)			
O ₁ —E _u —O ₃	138.8(3)	O 2 — Eu—O 3	76.9(3)			
O 5 — Eu— N 7	69.7(3)	O 6 — Eu— N 7	130.2(4)			
O 3 — Eu— N 7	125.2(3)	O 5 — Eu — N 8	87.1(3)			
O 6 – Eu– N 8	85.9(3)	O 3 — Eu— N 8	70.9(3)			
$O_1 - E_u - C_{21}$	85.5(3)	O 2 - Eu - C 21	70.2(3)			
N 7—Eu—C21	98.6(3)	Eu-O4-C21	125.0(8)			
Eu-O 1 C 2	134.3(8)	Eu-O 2 - C 4	126.3(8)			
O 3 — C19—C20	119.8(11)	C 19-C 20-C 21	121.8(13)			
С 4 — С 3 — С 2	121.4(13)	O 2 - C 4 - C 3	130.8(13)			
О 1 —С 2 —С 3	121.9(12)	Eu—N 8 — C 57	120.8(8)			
O 4 C21 C20	131.7(14)	O 6 — C 38— C 37	133.5(12)			
O 5 — C 36 — C 37	123.8(13)	С 38—С 37—С 36	120.4(11)			
04-Eu-01	76.2(3)	O1-Eu-O6	126.1(3)			
O 6 — Eu—O 2	78.0(3)	O 6 — Eu—O 3	71.1(3)			
O1-Eu-N7	75.6(3)	O 4 — Eu— N 8	93.5(3)			
O 2 — Eu — N 8	147.2(3)	$O \in -E_u - O 2$	113.5(3)			
Eu—O 5 —C36	136.8(8)	Eu-O 3 - C 19	136.0(8)			
O4—Eu—O6	142.8(3)	O 5 — Eu—O 3	136.9(3)			
O 4 — Eu — N 7	80.7(3)	O 2 - Eu- N 7	146.5(3)			
O 1 — Eu — N 8	138.7(3)	N 7-Eu-N 8	63.2(3)			
Eu—O 6 — C 38	133.3(7)	Eu— N 7 — C 56	119.6(8)			

表4 键 角 Table 4 Selected Chemical Bond Angle

三、红外光谱

有关希土 β —双酮配合物的红外光谱研究很多,但主要是关于直链 β —双 酮 配 合物⁽⁸⁻¹³⁾,而吡唑类 β —双酮配合物的红外光谱研究⁽¹⁴⁻¹⁵⁾相对较少。我们分别测定了HDPAP,Eu(DPAP)₃·EtOH·3H₂O,Eu(DPAP)₃.(o-phen)的中红外,远红外光谱,对最重要的吸收峰加以指认和讨论。

中红外祥品用KBr(G.P)压片,远红外样品用CsI(C.P)压片。在Noiclet-7199B型 红外光谱仪上测定FT-IR。

HDPAP中1624cm⁻¹, 1546cm⁻¹峰为C = O伸缩振 动峰〔图 4 〕, 这两个峰 在 Eu(DPAP)₃·EtOH·3H₂O的红外光谱中位移成1615cm⁻¹, 1487cm⁻¹〔图 5 〕, 说明羰 基C = O参与成键。比较 Eu(DPAP)₃(o-phen)与 Eu(DPAP)₃·EtOH·3H₂O的红外 光谱,不难看出Eu(DPAP)₅(o-phen)光谱中增加了1641cm⁻¹, 1142cm⁻¹1102cm⁻¹, 863cm⁻¹, 845cm⁻¹, 730cm⁻¹六个吸收峰, 并且有些峰产生了位移(如1583cm⁻¹位移

3巻

成1595cm⁻¹),说明o-phen取代溶剂分子形成混配配合物Eu(DPAP)₃(o-phen)。 比较HDPAP, Eu(DPAP)₃·EtOH·3H₂O和 Eu(DPAP)₃(o-phen)的远红外光 谱,我们在以前的工作⁽¹⁰⁾基础上将吸收峰392cm⁻¹指认为配位键 Eu-O(O为 β--双酮 中的配位氧原子)的红外活性峰。

参考文献

- (1) Cockerill, A.F., Davis, G.L.D., Harden, R.C. and Rackham, D.M., Chem. Rev. ,73 553(1973).
- [2] Samelson, H., Brecher, C. and Lempick, A., J. Mol. Spec., 19, 349-371 (1966).
- 〔3〕 施鼐, 吴瑾光, 徐光宪, 千金子, 姚家星, 泡海福, Kusumoki, M., Yasuoka, N. and Kakudo, M., 分子科学与化学研究, F(1), 11(1984).
- [4] Watson, W.H., Williams, R.J. and Stemple, N.R., J. Inorg. Nucl. Chem., 34, 501-508(1972).
- (5) Weast, R.C., "«CRC Handbook of Chemistry and Physics», CRC Press, Inc., 1974-1975, 55th edition F-200-F-201.
- 〔6〕 陈民勤, 宋沅, 顾翼东, 金祥林, 分子科学与化学研究, 4, 465(1981)8.
- 〔7〕谢有畅,邵美成,《结构化学》,人民教育出版社 P112 (1979).
- 〔8〕梁映秋,刘举正,刘国发,赵永年,王宇天,高等学校化学学报,2(1),97(1981).
- [9] Nakamoto, K., IR and Raman Spectra of Inorganic Compounds, 1978.
- (10) Misumi, S., Iwasaki, N., Bull.Chem.Soc.Japan, 40, 550(1967).
- 〔11〕徐广智,孙家镔,王玉珍,李立朴,唐有祺,科学通报,26,474(1981).
- [12] Mathur, R.C., Surana, S.S.L. and Tandon, S.P., Z.Naturforsch, 30
 (6) 207(1975).
- [13] Mehta, P.C., Surana, S.S.L. and Tandon, S.P., Can.J.Spectroscopy, 18 55 (1973).
- 〔14〕 梁映秋,赵水年,传永吉,陈滇,李声崇,科学通报,29(4),210(1984).
- [15] Okafa, E.C., Polyhedron, V2(5), 309-316(1983).
- 〔16〕王加赋,吴瑾光,陈滇,徐光宪,《第四届分子振动光谱学术报告会预印集》, 55~56 (1986年11月27—12月1日)苏州.

PREPARATION, CRYSTAL STRUCTURE AND INFRARED SPECTRA OF EUROPIUM TRIS (1,3-DIPHENYL-4-ACETYL-PYRAZOLONE-5) (o-PHENANTHROLINE)

Wang Jiafu Zhang Shiwei Wu Jinguang Chen Dian

Xu Guangxian (K. H. Hsu)

(Department of Chemistry, Beijing University)

The preparation, crystal structure and infrared spectra of europium tris $(1,3-\text{diphenyl-4-acetyl-pyrazolone-5}) \cdot (o-\text{phenanthroline})$ or Eu (DPAP)₃ (o-phen) were presented. The crystal structure has been determined by X-ray analysis from intensity data for 4900 independent reflections. The crystal is monoclinic, space group $C_{2h}^6-C_2/c$, with eight molecules per unit cell. The cell dimensions are; a = 23.021(15) Å, b = 22.988(11) Å, c = 23.549(9) Å, $\beta = 109.27(4)^\circ$ and other parameters are; F(000) = 4527.00, $\mu = 11.28 \text{ cm}^{-1}$ (Mo K_a).

The coordination number of europium is eight. Each europium atom is coordinated by six oxygen atoms and two nitrogen atoms arranged at the vertices of a distorted archimedean square antiprism.

Keywords europium β -diketone o-phenanthroline chelate preparation crystal structure infrared spectra