四核镨过氧根配位化合物

 $(Pr_4(O_2)_2Cl_8(THF)_8(H_2O)_2) \cdot 2THF$

的晶体和分子结构*

杨 光 第 (吉林大学理论化学研究所、长春)

林应章 吴瑾光 徐光宪

(北京大学化学系)

本文用 X—射线衍射法测定了 $[\Pr_4(O_2)_2 Cl_6(THF)_8(H_2O)_2]$ ·2THF 訂晶体 和分子结构。晶体属三斜晶系,空间 群为 Pi,晶胞参数为 a=11.184(4), b=13.030(5), c=10.615(3)Å, $a=97.28(3),\beta=90.16(3),\gamma=102.84(3)^{*}; Z=1$ 。 从三维Patterson函数分析结果确定独立的Pr和Cl原子座标,其余的全部非氢原子 座标由若干轮Fourier和差Fourier合成中得到,最后的R因子为0.082。分子是 C_1 点群对称性,其对称中心与晶体对称中心 重合。四个中央Pr离子的氧化态为+3 价,它们由氯侨和过氧根 向 "氧帽"联结在一起,构成含过氧帽的四核 潜混 合配位 化合物。错原子处于两种不同的化学环境,其配位数分别为 8 和 9。

关键词: 四核潜配合物 过氧根配位体结构

由于含过氧根(O₂²⁻)和超氧根(O₂⁻)的过渡金属配合物在生物过程及若干催化反应 中的重要作用,长期以来这类化合物一直受到人们的极大重视。该研究领域涉及到配合 物的形成、几何构型、电子结构、热力学、动力学、反应性质、催化和生物活性等广泛 课题⁽¹⁾。但是,镧系元素的类似配合物的研究,尚未引起人们的足够重视⁽²⁾。我们在 合成多核镧系元素桥联化合物,进而研究它们成键规律的过程中,合成了四核错含过氧 根配合物〔Pr₄(O₂)₂Cl₈(THF)₈(H₂O)₂]·2THF。晶体结构分析确定了分子的化学组 成,揭示了各类原子间成键方式及中央金属离子的配位特征,为这一类化合物的其他性 质的研究提供了必要的数据。

本文于1987年1月7日收到。

* 高等学校科学基金资助课题。

实验工作

一、晶体的培养和封装

采用另文中所报道的方法合成化合物并培养单晶。晶体呈浅绿色,在空气和氮气中 均不能稳定存在,而且一离开母液立即风化变质。因而,利用氟油保护晶体,将生长较 完美的单晶体连同氟油封装在薄壁毛细管玻璃中。

二、衍射数据的收集及修正

挑选尺度约为 $0.3 \times 0.3 \times 0.2$ mm已封于毛细管中的晶体,安装在美国Nicolet XRD 公司生产的R3四园衍射仪上收集衍射数据。所用辐射源为经石墨晶体单色器单色化的Mo K_a ($\lambda = 0.71069$ Å)。 首先从25个强反射的最小二乘拟合结果确定 其 晶 胞 参 数为: a = 11.484(4), b = 13.030(5), c = 10.645(3)Å, a = 97.28(3), $\beta = 90.16(3)$, $\gamma = 102.84(3)^\circ$, V = 1539.8Å³。数据收集以 $\theta - 2\theta$ 方式变速扫描,在 $3 < 2\theta < 50$ 范围内测 量反射总数为5417,其中3738个独立可观测反射用于结构修正。全部反射数据经过 LP 因子和经验吸收校正。

三、结构的测定

晶体结构空间群为Pi,每个晶胞内含有一个分子。首先从三维Patterson函数的分析中得到每个独立区内所含的两个Pr以及四个 Cl 原子的座标,将其代入后进行若干轮差Fourier 以及 Fourier 合成,发现全部碳和氧原子的位置。结构修正用块矩阵最小二乘程序,从各向同性温度因子过渡到全部非氢原子各向异性修正,最后收敛到R=0.082。 全部计算工作在Eclipe S/250小型电子计算机上进行,程序系统为SHE LXTL。

结果与讨论

晶体结构分析的结果确定了分子的化 学 组 成 为 [Pr₄(O₂)₂Cl₈(THF)₈(H₂O)₂]. 2THF。晶 体结构中只含有对称中心。分子对称性为C₁,其对称中心与晶体结构中的一 个对称中心重合。晶胞划分为两个不对称单元,每个不对称单元含有半个分子。表 1、 表 2 和表 3 分别列出部分独立原子的座标参数,主要化学链长及键角。图 1 为分子结构 俯视图,为了清楚地显示分子结构的主要特征,分子中的八个配位四氢呋喃分别以它们 的氧原子位置代表。基于相同原因,图中没有画出两个不参与配位的中性四氢呋喃分子 和全部氢原子。

[Pr₄(O₂)₂Cl₈(THF)₈(H₂O)₂]·2THF 为一种较新颖的四核希土配位化合物,四 个正 3 价的Pr金属离子呈中心对称分布,它们相互间以μ-2氯桥和由两个过氧根(O₂²⁻) 提供的四个"氧帽"连结起来,四个 Pr 离子处于两种不同的配位环境,其中两个 Pr为 九配位,配体为桥键氯原子、氧帽和四氢呋喃。另外两个Pr离子呈八配位,其配体除桥 键氯原子,氧帽和四氢呋喃外,还包括非桥键氯原子和水分子。因为两种配位多面体均 由不同种类的配体组成,它们的化学成分,成键特征不同,体积大小差别也很大,因此 这两种配位多面体都与规则多面体偏离较大。

分子中所含两个过氧根(O22-)基团的O-O键长为1.523Å, 与游离过氧化氢的O-O

键长(1.47 Å)相近⁽³⁾。此外每个氧原子与三个Pr离子键合, 形成氧帽合配位方式。 三个Pr-O键长接近相等, 其平均值为2.409 Å。

图 1 Pr₄(O₂)₂Cl₈(THF)₈(H₂O)₂分子结构 Fig. 1 Molecular structure of Pr₄(O₂)₂Cl₈(THF)₈(H₂O)₂ Ot = THF, O3 = H₂O

表1 非氢原子应标(×10⁴)和等效温度因子(U×10³ Å²)

Table 1 Nonhydrogen Atomic Coordinates($\times 10^4$) and Thermal Parameters $U_{eq.}(\times 10^3 \text{\AA})$

atom	x	Y	Z	U_{eq} .
Pr1	777(1)	2651(1)	966(1)	60
Pr2	1351(1)	5220(1)	-937(1)	57
C11	- 285(4)	1217(3)	- 1130(4)	79
C12	1444(4)	7150(3)	- 2007(5)	78
C13	2622(4)	3601(3)	- 586(5)	78
C14	2059(6)	3524(4)	3147(5)	104
Ot1	2240(10)	1463(8)	814(11)	86
Ot2	547(10)	4160(8)	- 2940(10)	85
Ot3	2859(10)	6352(8)	627(10)	83
Ot4	3140(10)	5509(9)	- 2350(11)	96
Otā	1833(13)	9637(12)	6343(14)	158
01	- 67(8)	3782(6)	- 233(8)	54
O2	611(8)	4437(6)	939(8)	57
03	20(9)	1064(8)	2054(9)	53

"八个氯原子中的四个以μ-2桥形式与Pr键合,另外四个在端基上。桥键氯原子的存 在使整个分子处于更稳定的状态。但Pr-Cl(桥键)的平均键长约比Pr-Cl(端基)大 0.1Å,说明桥键较弱。这一配位化学中的普遍现象在探讨希土化合物的催化特性时已 经引起人们的重视⁽⁴⁾。另外值得提出的是分子中Pr-Cl-P₂键角只有91°,比常见的双核 配合物中的相应键角小15°⁽⁵⁾。

分子中的八个四氢呋喃以它们的氧原子与Pr离子结合,平均Pr-O距离为2.496Å, 与十配位的金属有机化合物($\eta^{5} - C_{s}H_{s}$)₃PrTHF中的Pr-O距离(2.56Å)很接近⁽⁶⁾。 晶体结构中尚含有两个不参与配位的中性四氢呋喃分子。

bond	bond length(Å)	bond	bond length(Å
Pr1—Cl1	2.788(4)	Pr2—Cl3	2.879(5)
Pr1—C12a	2.836(5)	Pr2—Ot2	2.146(10)
Pr1-C13	2.850(5)	Pr2—Ot3	2.484(10)
Pr1—Cl4	2.723(6)	Pr2-Ot4	2.538(12)
Pr1–Ot1	2.517(12)	Pr2-01	2.395(8)
Pr1-01	2.418(10)	Pr2-02	2.427(9)
Pr1	2.380(9)	Pr2-C12	2.870(5)
Pr103	2.187(10)	Pr2—O1a	2.422(10)
		Pr2—O2a	2.394(10)

表 2 主要化学编辑长

note: The atoms adding suffix a are the corresponding equivalent atoms.

第1期

的晶体和分子结构

Table 3 Selected Bond Angles with Standard Deviations in Parenthesis					
bond angle	degree	bond angle	degree		
Cl1—Pr1—Cl2a	93.5(1)	C11—Pr1—Ot1	82.3(3)		
Cl1—Pr1—Cl3	89.9(1)	Cl1—Pr1—O1	77.6(2)		
Cl1-Pr1-Cl4	163.3(2)	C11—Pr1—O2	114.5(2)		
Cl1—Pr1—O3	81.5(2)	C14—Pr1—O2	82.0(2)		
Cl3—Pr1—Ot1	74.7(3)	Cl4-Pr1-03	86.6(3)		
C13—Pr1—O1	73.4(2)	O1-Pr1-O2	37.0(3)		
C13-Pr1-O2	73.1(2)	01—Pr1—03	137.0(3)		
C13—Pr1—O3	143.9(3)	O2—Pr1—O3	142.0(3)		
0t1-Pr1-01	142.1(3)	C12—Pr2—O13	144.9(1)		
Ot1-Pr1-O2	143.4(3)	Cl2—Pr2—Ot2	90.9(3)		
Ot1—Pr1—O3	69.4(4)	C12—Pr2—Ot3	84.5(3)		
Cl2a-Pr1-Cl3	143.2(1)	Cl2—Pr2—Ot4	71.9(3)		
Cl2a-Pr1-Cl4	94.1(2)	Cl2-Pr2-O1a	71.0(2)		
Cl2a-Pr1-Ot1	142.0(3)	C12—Pr2—O1	140.5(3)		
Cl2a-Pr1-O1	71.6(2)	Cl2—Pr2—O2a	71.4(2)		
Cl2a-Pr1-O3	72.2(2)	O12—Pr2—O2	138.6(2)		
Cl3—Pr1—Cl4	72.6(3)	C13—Pr2—Ot2	87.6(3)		
Cl4-Pr1-Ot1	92.8(2)	C13—Pr2—Ot3	84.1(3)		
Cl4—Pr1—O1	82.6(3)	Cl3—Pr2—Ot4	73.6(3)		
C13—Pr2—O2	119.0(2)	C13-Pr2-O1	73.2(3)		
C13—Pr2—O2	71.9(3)	Ot3—Pr2—O2a	117.7(3)		
Cl3—Pr2—O1a	139.1(2)	Ot4-Pr2-01	139.1(4)		
Ot2-Pr2-O2a	142.3(2)	Ot4—Pr2—O2	142.7(4)		
Ot2—Pr2—Ot3	158.3(4)	Ot4-Pr2-O1a	140.0(3)		
Ot2—Pr2—Ot4	77.5(4)	Ot4—Pr2—O2a	136.4(4)		
Ot2—Pr2—O1	77.9(3)	Pr1-C13-Pr2	90.3(1)		
Ot2—Pr2—O2	114.5(3)	Pr1-C12a-Pr2a	91.5(1)		
01-Pr2-01a	117.2(4)	Pr1-01-02	70.1(5)		
O1-Pr2-O2	80.4(3)	Pr1-O1-Pr2	115.1(4)		
O1-Pr2-O2a	80.7(3)	Pr1-O1-Pr2a	115.2(4)		
O1-Pr2-O2	36.8(3)	O2-O1-Pr2	72.8(4)		
O1-Pr2-O2a	69.4(3)	O2-O1-Pr2a	70.5(5)		
02-Pr2-01a	68.4(3)	Pr2-O2-Pr2a	99.3(3)		
O2-Pr2-O2a	80.8(4)	O1-O2-Pr1	72.9(5)		
01—Pr2—O2a	36.9(3)	Pr2-O2-Pr2a	99. 2(4)		
Ot3—Pr2—Ot4	81.0(4)	Pr1-O2-Pr2	115.3(4)		
Ot3-Pr2-O1	118.3(3)	Pr1-O2-Pr2a	117.8(3)		
Ot 3—Pr2—O2	81.9(3)	O1-O2-Pr2	70.4(5)		
Ot3-Pr2-O1a	81.3(3)	01—02—Pr2a	72.6(5)		

表 3 部分化学键键角

•

多考文献

[1] Boca, R., Coord. Chem. Rev., 50, 1(1983).

[2] Bradley, D.C., Ghotra, J.S., Hart, F.A., Hursthouse, M.B., and Raithby, P.R., J.Chem.Soc., Ciem.Commun., 40(1971).

[3] Giguere, P.A., Schomaker, V., J.Am. Chem. Soc., 65, 2025(1943).

〔4〕金钟声,王生龙,王佛松,申成,杨光第,樊玉国,高等学校化学学报,8,736(1985).

[5] Habenschuss, A. and Spedding, F.H., Cryst.Struct.Comm., 7, 535(1978).

「6 〕 樊玉国, 昌品詰, 金钟声, 陈文启, 中国科学, B(5), 387(1984)。

CRYSTAL AND MOLECULAR STRUCTURE OF A NEW TETRANUCLEAR Pr COMPLEX [Pr₄(O₂)₂Cl₈(THF)₈(H₂O)₂].2THF

Yang Guangdi

(Institute of Theoretical Chemistry, Jilin University, Changchun)

Lin Yingzhang Wu Jinguang Xu Guangxian (Department of Chemistry, Beijing University, Beijing)

The crystal structure of a novel tetranuclear Pr complex $(\Pr_4(O_2)_2 Cl_8(THF)_8(H_2O)_2) \cdot 2THF$ was determined by the single crystal X-ray diffraction method. The crystal is triclinic with unit cell dimensions as follows: a = 11.484(4), b = 13.030(5), c = 10.645(3), $a = 97.28(3)^\circ$, $\beta = 90.16(3)^\circ$, $\gamma = 102.84(3)^\circ$, Z = 1; space group P1. The parameters of Pr and Cl atoms were solved by the heavy-atom method. It is refined to an R Value of 0.082. The Central core of the compound is $\Pr_4O_4Cl_4$, containing four μ_2 -Cl atoms and two doubly tridentate capping peroxo groups. There is no-bonding between Pr atoms. The coordination numbers of Pr(1) and Pr(2) are 8 and 9 respectively.

Keywords tetranuclear Pr complex peroxo group ligand structure