JOURNAL OF INORGANIC CHEMISTRY

研究简报

含茂钛低聚物的制备与光谱

党 铁

(陕西师大化学系 西安)

文中报道两种新的含茂钛低 钛物Cp₂Ti(Cl)-O-[-Ti(Cp)(O₂CC₂H₄CH₃-o)-O-]_n-H(I)与Cp₂Ti(Cl)-O-[-Ti(Cp)(O₂CCH₂C₁₃H₇)-O-]_n-H(I)的制备并用元素分析和光谱(IR, ¹H NMR, MS)对它们进行了鉴定。

关键词: 茂钛 低聚物 光谱

在合成、分离二茂钛类衍生物过程中,常出现油状物,一般 将 其 作 为 副 产 物 除 去⁽¹⁻³⁾,而在专门合成的茂钛聚合物, 实验值与理论值则相差较大, 故不易确定它们 的组成⁽⁴⁻⁵⁾。可见,对此尚需进一步研究探索。

实 验

一、试剂

二氯二茂钛(Cp_2TiCl_2)按作者另待发表的一文中方法合成*。邻甲基苯酸甲钠、 α -萘乙酸钠由相应的酸分别与氢氧化钠反应制得、干燥。苯:AR级,干燥。

二、制备

 Cp_2TiCl_2 与邻甲基苯甲酸钠按 1:2 的摩尔比于苯中混合,回流搅拌 5 小时,冷却后,分离、纯化得黄色固体 I:

 $Cp_2Ti(C1)-O-(-Ti(Cp)(O_2CC_6H_4CH_3-o)-O-)_a-H$

软化点: 151℃。 元素分析结果(%): C, 57.09, H, 4.61, Ti, 19.32; 计算值(n = 2): C, 56.95, H, 4.65, Ti, 18.97。

在类似实验条件下, Cp_2TiCl_2 与 α -萘乙酸钠反应两个多小时,得桔黄色固体 I: 软化点: 166 C。元素分析结果(%): C,59.64,H,4.59,Ti,17.24; 计算值(n=1): C,58.54,H,4.69,Ti,18.01; n=2: C,60.92,H,4.60,Ti,17.00。光谱测定 数据见表 1 。

本文于1987年1月6日收到。

^{*} 该文已被 "无机、金属有机化学合成反应" (Synth.React.Inorg.Metal-Org. Chem.)接受, 在印刷中。

entry	IR (cm ⁻¹)				¹HN M R(δ)	MS		
	3440(wbr)	3070(w)	3030(w)	2970(w)	7.50—8.20(m)	309 2	95 281	266
	2935(w)	1700(m)	1610(m)	1575(m)	7.15(d)	259 2	41 225	201
1	1533(s)	1490(W)	1446(s)	1415(vs)	2.48(s)	196 1	87 183	169
I	1280(w)	1160(w)	1115(w)	1050(w)	1.25(s)	154 1	46 136	128
	1030(vw)	960(vw)	850(vs)	825(w)	0.86(s)	129 1	18 119	105
	785(w)	740(s)	703(w)	655(m)		91	90 82	2 77
I	3405(wbr)	3110(m)	3050(m)	2950(w)	7.26-7.83(m)	362 3	13 273	3 250
	1710(w)	1594(s)	1540(s)	1480(W)	6.58(d)	249 2	48 213	213
	1440(m)	1430(m)	1390(s)	1295(W)	4.12(s)	196 1	85 183	3 178
	1260(w)	1236(vw)	1165(w)	1146(w)	1.26(s)	176 1	.68 148	3 145
	1070(w)	1020(m)	940(w)	820(s)	0.90(s)	129 1	22 119	9 113
	795(s)	783(s)	703(w)	630(wbr)	!	91	86 78	8 77
	590(w)	540(w)						

表 1 聚合物的光谱数据 Table 1 Spectral Data of Polymers

结果与讨论

为表征产物,除元素分析外,还进行了溶解性试验和光谱鉴定。 I 和 I 的溶解性相似: 溶于氯仿、二氯甲烷、苯、THF、丙酮、DMSO等,不溶于石油醚、氨水、硝酸、硫酸、磷酸等溶剂,在盐酸中分解,有Cp₂TiCl₂析出。

由表 1 可见,低聚物 I 和 I 均出现茂环、芳环、羧基的红外特征吸收,此外有 $\nu_{\text{TI-CI}}$ ($I_{:}$ 550 cm $^{-1}$, $I_{:}$ 540 cm $^{-1}$); $\nu_{\text{TI-O}}$ ($I_{:}$ 1160 cm $^{-1}$, $I_{:}$ 1165, 1146 cm $^{-1}$) 以及 $\nu_{\text{TI-O-TI}}$ ($I_{:}$ 785 cm $^{-1}$, $I_{:}$ 783 cm $^{-1}$)等。在核磁谱中,I 有苯环,甲基质 子峰,I 有萘环,亚甲基质子峰。相应的茂环质子变为双峰($I_{:}$ 7.15, $I_{:}$ 6.58),说明存在两种不同的茂环、此外,在0.86—1.26之间,I 和 I 都出现两个单峰,它们很可能是由不同环境的 Ti-O-H 质子产生的。在质谱中均未发现分子离子峰,而特征碎片离子峰比较明显(m/e),例如, $CpTi(O_{2}CCH_{2}CI_{0}H_{7})O(313)$, $CpTi(O_{2}CC_{6}H_{4}CH_{3})$ (281), $Cp_{2}TiClO$ (229), $Cp_{2}Ti(178)CpTi$ (OH)O (146) 以及它们进一步断裂,重排的离子峰。

根据以上实验事实,我们认为本文的茂钛聚合物具有下列组成(n=1,2)

$$\begin{array}{c|c}
C_p & C_p \\
C_p & C_1 & C_p \\
C_1 & C_1 & C_n \\
C_1 & C_n & C_n
\end{array}$$

多考文献

- [1] Hoffman, D.M., Chester, N.D., Fay, R.C., Organometallics, 2, 48 (1983).
- 〔2〕师树简、党轶、张玉鸿,科学通报,31(4)318(1986)。
- 〔3〕 党轶、扬志民、孙作民,陕西师大学报(自然科学版),19(3),44(1986)。
- [4] Toney, J.H., Marks, T.J., J.Am. Chem. Soc., 107, 947(1985).
- [5] Carraher, C.E., Jr., et al., J. Macromal. Sci-Chem., A15(5),773(1981).

PREPARATION AND SPECTRA OF TITANOCENE-CONTAINING LOW POLYMERS

Dang Yi

(Department of Chemistry, Shanxi Normal University, Xian)

New polymers $Cp_2Ti(C1)-O-(-Ti(Cp))(O_2CC_6H_4CH_3-o)-O]_n-H(I)$ and $Cp_2Ti(C1)-O-(-Ti(Cp))(O_2CCH_2C_{10}H_7)-O-]_nH(I)$ were obtained by reacting Cp_2TiCl_2 with $o-CH_2C_6H_4CO_2Na$ and $C_{10}H_7CO_2Na-\alpha$ in benzene, respectively. They were characterized by elemental analysis and spectra (IR, ¹H NMR and MS). The results were consistent with the proposed compositions, i.e. n=2 for (I), n=1 or 2 for (I).

Keywords tilanocene low-polymer spectrum