两个新的Fe₃S₃**原子簇化合物** 的合成和结构研究*******

,刘 平 黄梁仁 杨 瑜 卢嘉锡 (中国科学院福建物质结构研究所,福州)

本文介绍利用一步法反应, 分别合成出新的 Fe₃S₃ 原子 簇 化 合 物 [Et₄N]₃ (Fe₃(p-CH₃PhS)₃Cl₃Br₃](1)和[Et₄N]₃[Fe₃(p-CH₃PhS)₃Cl₆](2). X射线 晶体结构测定表明, 化合物1和2的阴离子骨架均为3Fe、3S交叉排列的六元分, 南^(A) 為 呈瘤型结构。1和2均属三斜晶系, 空间群均为P1。1的晶胞参数: a=12.30 (2), b=13.780(4), c=19.097(2)Å, $a=101.39(2), \beta=101.92(1), \gamma=106.15$ (2)°, Z=2. 2的晶胞参数: a=12.226(4), b=15.323(3), c=17.012(2)Å. $a=70.72(1), \beta=88.65(5), \gamma=72.51(2)°, Z=2$ 。本文还讨论了该反应的 立体化学和机理。

关键词: Fe3S3原子猿配合物 晶体结构

生物有机与无机分子的研究一直是一个十分活跃的领域。固氮酶 Azotobacter vine_, landii 的铁氧还蛋白活性中心是一个Fe₃S₃六元环⁽¹⁾, 呈船型结构。这种构象可能与 其生物活性有着十分密切的关系。Hagen⁽²⁾等合成的 [Et₄N]₃[Fe₃(PhS)₃Cl₆] 模 拟 物,其阴离子骨架Fe₃S₃中心是一个平面型六元环,而不是船型。

我们在进行卢嘉锡⁽³⁾提出的固氮酶钼铁蛋白活性中心福州模型 I 的合成工 作 中, 开展了对铁氧还蛋白活性中心Fe₃S₃ 原子簇的合成和结构研究。在合成和分离出一对同 分异构体 α -和 β -[Et₄N]₃[Fe₃(PhS)₃Cl₃Br₃]^{(4)5]}之后,通过一步法反应进一步合 成出两个新的 Fe₃S₅ 原子簇化合物 [Et₄N]₃[Fe₃(p-CH₃PhS)₃Cl₃Br₃] 1 和 [Et₄N]₃ [Fe₃(p-CH₃PhS)₄Cl₄] 2。本文将报告这两个化合物的合成与结构。

实 验

一、〔Et₄N]₃〔Fe₃(p-CH₃PhS)₃Cl₃Br₃]1的合成

溶剂均需除水、除氧。在氦气保护下进行反应操作。

在圆底烧瓶中,加入等克分子量 FeCl2、p-CH3PhSNa、Et4NBr 及适量乙腈溶液,

* 该文参加1985年全国第一届有机合成学术报告会。

本文于1987年2月21日收到。

4卷

电磁搅拌, 经一段时间反应, 过滤除去不溶物, 滤液经适当浓缩后静置, 得到墨绿色晶体4.9g, 产率58%。 $C_{45}H_{s1}Br_{s}Cl_{3}Fe_{3}N_{3}S_{s}$ (计算值: C, 42.43, H, 6.40, Br, 18.82, Cl, 8.35, Fe, 13.15, N, 3.30, S, 7.55。实测值: C, 42,99, H, 6.44, Br, 19.02, Cl, 8.15, Fe, 13.70, N, 3.44, S, 7.59)。 λ (CH₃CN):233(e, 27000), 273(sh)(e, 12000), 292(12000) nm。 ν (KBr):405, 382(Fe-S-Fe), 318, 331(Fe-Cl), 240, 218(Fe-Br)cm⁻¹。

二、〔Et₄N]₃〔Fe₃(*p*-CH₃PhS)₃Ch₆过的合成

溶剂处理及操作同前。在圆底烧瓶中,加入等克分子量 $FeCl_2$ 、 $p-CH_3PhSNa$ 、 Et₄NCl及适量乙腈溶液,电磁搅拌,经一段时间反应,过滤除去不溶物,滤液经适当 浓缩后静置,得到浅黄绿色晶体2.3g,产率52%。C₄₅H₃₁Cl₀Fe₃N₃S₃(计算值:C, 47.39, H, 7.16, Cl, 18.65; Fe,14.69; N,3.68; S,8.43。实测值:C,47.08; H, 7.21, Cl, 18.97; Fe, 14.54; N, 3.51; S, 8.23)。 λ (CH₃CN):235(ϵ , 28000), 273(sh)(ϵ , 14000), 290(ϵ , 14000)nm₀ ν (KBr):406, 396, 392(Fe-S-Fe), 319, 288(Fe-Cl) cm⁻¹。

三、晶体结构测定

化合物1和2的单晶均在充高纯氮气的玻璃毛细管中封装,在CAD4 四圆衍射仪上测 定晶体单胞参数及收集 X 射线衍射强度数据。化合物1晶体属三斜晶系,空间群P1。晶 胞参数: a=12.301(2), b=13.780(4), c=19.097(2)Å, a=101.39(2), $\beta=101.92(1)$, $\gamma=106.15(2)$ °, V=2928.2Å³, Mr=1273.95, $D_m=1.423$, D_o $=1.445g/cm^3$, $Z=2_o$ 化合物2晶体属三斜晶系,空间群 P1。晶胞参数: a=12.226(4), b=15.323(3), c=17.012(2)Å, a=70.72(1), $\beta=88.65(2)$, $\gamma=72.51(2)$ °, V=2859(1)Å³, Mr=1140.60, $D_m=1.313$, $D_o=1.325g/cm^3$, $Z=2_o$ 在CAD4四圆衍射仪上采用衰减系数为20的衰减器及经石墨单色化的MoK_aX射线。 以 $a/2\theta$ 方式扫描,化合物1和2晶体分别在1° $\leq \theta \leq 22^\circ$ 和1° $\leq \theta \leq 23^\circ$ 范围内,分别收集 7097和8044个独立衍射点,其中可观察衍射点(I>3\sigma(I))分别为4572和5363个。使 用SDP程序。由直接法解出,经Fourier合成及全矩阵最小二乘法修正,最终偏离因子 R分别为0.054和0.063。1和2的非氢原子坐标及热参数分别列于表1和表2。

结果与讨论

合成反应式如下:

$$3FeC1_{2} + 3p - CH_{3}PhSNa + 3Et_{4}NBr \xrightarrow{CH_{3}CN} (Et_{4}N)_{3}(Fe_{3}(p-CH_{3}PhS)_{3}) \\ Cl_{3}Br_{3}] + 3NaCl \qquad (1)$$

 $3FeC1_{2}+3p-CH_{3}PhSNa+3Et_{4}NC1 \xrightarrow{CH_{3}CN} (Et_{4}N)_{3}(Fe_{3}(p-CH_{5}PhS)_{3}) (2)$

两个新的Fe₃S。原子焦化合物的合成和结构研究

3

	赛 1 化合物 1 的原子坐标和热参费
Table 1	Atomic Coordinates and Thermal Peram

	妻 1 化合物 1 的原子坐标和热参数	
Table 1	Atomic Coordinates and Thermal Parameters of Compound	1

atom	X	Y	, Z	B eq .
Fe(1)	0.3213(1)	0.44463(9)	0.15465(6)	4.76
Fe(2)	0.3516(1)	0.74489(9)	0.30143(6)	4.81
Fe(3)	0.1400(1)	0.45230(9)	0.33177(6)	4.41
X(11)*	0.2071(1)	0.4002(1)	0.02927(7)	6.69
X(12)*	0.4802(1)	0.3785(1)	0.16128(8)	7.21
X(21)*	0.5282(1)	0.8628(1)	0.39023(8)	7.19
X(22)*	0.2477(2)	0.8425(1)	0.24599(11)	8.91
X(31)*	0.0643(1)	0.4145(1)	0.30161(9)	6.98
X(32)*	0.2042(1)	0.3908(1)	0.43399(8)	6.74
S(1)	0.2324(2)	0.6326(2 3	0.3518(1)	5.65
S(2)	0.2022(2)	0.3854(2)	0.2299(1)	5.73
S(3)	0.3917(2)	0.6259(2)	0.2126(1)	5.54
C(11)	0.2011(6)	0.7017(6)	0.4397(4)	4.2
C(12)	0.2453(7)	0.8089(6)	0.4542(5)	5.2
C(13)	0.2258(7)	0.8643(7)	0.5164(5)	5.6
C(14)	0.1565(7)	0.8114(7)	0.5545(5)	6.2
C(15)	0.1112(7)	0.7027(7)	0.5303(4)	5.6
C(16)	0.1331(7)	0.6491(6)	0.4687(4)	5.2
C(17)	0.1343(9)	0.8713(9)	0.6242(6)	9.3
C(21)	0.1330(7)	0.2477(6)	0.1958(4)	5.0
C(22)	0.1469(9)	0.1907(7)	0.1339(5)	7.2
C(23)	0.0942(9)	0.0831(8)	0.1090(5)	7.7
C(24)	0.0252(8)	0.0273(7)	0.1447(5)	6.3
C(25)	0.0089(9)	0.0847(7)	0.2042(5)	7.9
C(26)	0.0609(8)	0.1937(8)	0.2305(5)	7.2
C(27)	-0.0230(10)	-0.0902(8)	0.1211(7)	9.1
C(31)	0.4757(7)	0.6952(6)	0.1621(4)	5.0
C(32)	0.4969(7)	0.6418(7)	0.1005(5)	6.0
C(33)	0.5598(8)	0.6959(8)	0.0577(5)	6.7
C(34)	0.6021(8)	0.8010(7)	0.0768(5)	6.7
C(35)	0.5820(9)	0.8548(7)	0.1391(6)	7.4
C(36)	0.5204(8)	0.8026(7)	0.1818(5)	6.2
C(37)	0.6649(9)	0.8558(10)	0.0278(6)	10.1
N(1)	0.8037(7)	0.2757(6)	0.0362(4)	7.6
C(41)	0.2179(11)	0.6753(9)	0.0319(6)	10.9
C(42)	0.1159(11)	0.6543(6)	0.0637(6)	10.3
C(43)	0.9221(9)	0.3461(10)	0.0946(6)	10.1
C(44)	0.9232(14)	0.4599(10)	0.1216(8)	12.3
C(45)	0.6947(9)	0.2689(11)	0.0635(8)	12.5
C(46)	0.6998(11)	0.2113(11)	0 1313(7)	11.3

4

.

•

•

4

无机化学

4卷

٠

* + a

续表 1	·.		ж.ў	×	
atom	X		Y	Z	B _{eq} .
C(47)	0.8195(10)		0.1695(9)	0.0098(7)	11.1
C(48)	0.7079(14)	I	0.0903(5)	-0.0508(4)	12.6
N(2)	0.4651(6)	1	0.2133(5)	0.3595(4)	5.8
C(51)	0.5937(15)		0.2267(14)	0.3660(11)	6.4
C(52)	0.6529(10)	I.	0.3249(11)	0.3371(8)	11.9
C(53)	0.4191(15)	L	0.1194(13)	0.3893(9)	5.5
C(54)	0.2849(10)	:	0.0999(10)	0.3860(7)	11.2
C(55)	0.4531(15)		0.3158(13)	0.3992(12)	7.0
C(56)	0.5097(11)	1	0.3463(10)	0.4854(7)	10.5
C(57)	0.3946(16)		0.1929(15)	0.2770(10)	6.7
C(58)	0.4283(16)	Εs.	0.0935(14)	0.2318(7)	16.9
N(3)	0.8270(7)		0.7274(6)	0.3339(5)	8.1
C(61)	0.9495(7)	ĺ	0.7387(10)	0.3382(8)	1 2. 5
C(62)	1.0024(14)		0.8577(15)	0.3215(8)	17.9
C(63)	0.7973(12)		0.8177(10)	0.3703(10)	10.0
C(64)	0.8613(12)	ł	0.8433(12)	0.4605(8)	12.7
C(65)	0.7866(13)		0.6308(11)	0.3684(8)	14.3
C(66)	0.6495(12)		0.6004(12)	0.3655(9)	13.6
C(67)	0.7459(12)	i	0.6990(12)	0.2559(9)	14.9
C(68)	0.783 (2)		0.6171(15)	0.2031(10)	19.7
C(51)'	0.507 (2)		0.3016(18)	0.3262(14)	11.8
C(53)'	0.3315(18)	:	0.1881(20)	0.3442(15)	10.6
C(55)'	0.525 (2)	I	0.247 (2)	0.4459(12)	12.5
C(57)'	0.498 (2)		0.1161(18)	0.3305(14)	11.4

* X = 0.5(Br + C1)

赛2 化合物2的原子坐标和热参数

Table 2Atomic Coordinates and Thermal Parameters of Compound 2atomXYZZ B_{eq}

atom	л	ľ	4	Ded.
Fe(1)	0.3059(1)	0.09609(8)	0.13809(7)	3.34
Fe(2)	0.3338(1)	0.35801(8)	0.17910(7)	2.95
Fe(3)	0.1410(1)	0.18216(8)	0.34670(7)	3.03
C1(1)	0.4658(2)	-0.0346(2)	0.1709(2)	5.17
C1(2)	0.1925(2)	0.1099(2)	0.0287(2)	6.99
C1(3)	0.2373(2)	0.5098(2)	0.0927(1)	4.46
C1(4)	0.5083(2)	0.3495(2)	0.2293(1)	4.52
C1(5)	0.2210(2)	0.0907(2)	0.4781(1)	4.66
C1(6)	-0.0525(2)	0.2389(2)	0.3409(1)	5.70
S (1)	0.2143(2)	0.3131(1)	0.2864(1)	3.65
			`	

+

٠

-

.

,

续表 2				
atom	x	Y	Z	Bara
5(2)	0.2020(2)	0.0917(2)	0.2573(1)	1 4.07
S(3)	0.3499(2)	0.2413(2)	0.1157(1)	4.43
N(1)	0.4691(6)	0.7993(5)	0.4722(4)	3.9
N(2)	0.8024(6)	0.1163(4)	0.1363(4)	3.5
N(3)	0.8571(6)	0.5738(5)	0.1751(4)	4.0
C(11)	0.2020(7)	0.3838(5)	0.3526(5)	2.9
C(12)	0.2524(7)	0.4582(5)	0.3318(5)	3.8
C(13)	0.2488(8)	0.5109(6)	0.3870(5)	4.6
C(14)	0.1957(8)	0.4904(6)	0.4610(5)	4.3
C(15)	0.1433(8)	0.4175(6)	0.4791(6)	4.8
C(16)	0.1468(8)	0.3633(6)	0.4258(5)	4.4
C(17)	0.1971(10)	0.5452(7)	0.5208(6)	6.3
C(21)	0.1488(7)	-0.0104(5)	0.2898(5)	3.2
C(22)	0.0898(7)	-0.0269(6)	0.3626(5)	3.6
C(23)	0.0430(7)	- 0.1056(6)	0.3863(6)	4.2
C(24)	0.0558(7)	- 0. 1658(6)	0.3388(6)	4.6
C(25)	0.1192(8)	-0.1499(6)	0.2670(6)	4.8
C(26)	0.1654(7)	-0.0721(5)	0.2429(5)	4.0
C(27)	-0.0019(9)	0.2467(6)	0.3609(7)	6.4
C(31)	0.4315(7)	0.2681(5)	0.0276(5)	2. 9
C(32)	0.4505(7)	0.3578(5)	-0.0012(5)	3.5
C (33)	0.5157(7)	0.3789(6)	-0.0715(5)	3.9
C(34)	0.5591(7)	0.3116(6)	-0.1115(5)	3.7
C(35)	0.5387(7)	0.2219(6)	-0.0818(5)	3.9
C(36)	0.4757(7)	0.1996(5)	-0.0127(5)	3.3
C(37)	0.6288(8)	0.3368(7)	-0.1874(5)	5.5
C(41)	0.5387(7)	0.7878(6)	0.5515(5)	4.2
C(42)	0.4946(8)	0.8713(6)	0.5846(6)	5.0
C(43)	0.5225(10)	0.7054(7)	0.4556(7)	6.6
C(44)	0.4646(10)	0.7037(8)	0.3736(7)	7.2
C(45)	0.4707(10)	0.8915(7) ·	0.3982(6)	6-6
C(46)	0,5939(11)	0.8858(10)	0.3731(7)	8.4
Ċ(47)	0.3403(8)	0.8182(7)	0.4834(6)	5.7
C(48)	0.3170(9)	0.7358(9)	0.5572(7)	9.1
C(51)	0.7192(8)	0.2206(6)	0.1053(6)	4.8
C(52)	0.7779(10)	0,2969(7)	0.1041(7)	6.7
C(53)	0.8529(8)	0.0889(6)	0.2261(5)	4.2
C (54)	0.7606(9)	0.0974(7)	0.2891(6)	. 5.5
C(55)	0.9056(8)	. 0.1026(7)	0.0849(6)	5.0
C(56)	0.8726(9)	0.1286(8)	- 0.0099(6)	6.4

. . . ÷

	-	
		•
		1
		-

atom	X	Y	Z	Beq.
C(57)	0.7252(8)	0.0552(6)	0.1296(6)	5.0
G (58)	0.7878(9)	-0.0557(6)	0.1658(7)	6.3
C (61)	0.8638(10)	0.5491(8)	0.0945(6)	6.4
C(62)	0.9573(9)	0.4458(7)	0.1063(7)	6.2
C(63)	0.7550(9)	0.6691(7)	0.1557(7)	6.3
C(64)	0.7357(10)	0.7070(7)	0.2294(7)	7.4
C(65)	0.8394(9)	0.4924(7)	0.2506(6)	6.0
C(66)	0.7236(8)	0.4735(7)	0.2394(7)	6.1
C(67)	0.9720(8)	0.5862(7)	0.2015(7)	6.3
C(68)	0.9980(9)	0.6747(7)	0.1371(9)	8.6

化合物1和2的合成均采用一步法进行,该方法简便,产物分子既可以同时引入氯、 溴混合卤素,也可以只引入氯一种卤素。化合物1和2阴离子骨架 Fe_sS₃为Fe、S 交叉排 列的船型六元环。这对于模拟铁氧还蛋白的活性中心 Fe₃S₃ 骨架的船型构象是十分重要 的。

溴离子作为沉淀剂的阴离子进入产物分子,在M₃S₃(M=B, Pd, Cu, Fe等)六 元环簇合物中是首次发现的,为研究反应机理提供了重要信息。

Hagen合成(Et,NJ₃(Fe₃(PhS)₃Cl₈)是采用两步反应,首先将PhSNa与Et₄NBr反应,过滤除去NaBr,然后再加入FeCl₂反应,产物分子中就不可能引入Br原子。

 $PhSNa + Et_{\bullet}NBr \xrightarrow{CH_{a}CN} Et_{\bullet}N^{+}PhS^{-} + NaBr$ (1)

 $3FeCl_2 + 3Et_4NPhS \xrightarrow{CH_3CN} (Et_4N)_3 (Fe_3(PhS)_3Cl_3)$ (2)

我们认为,一步法反应同时引入氯、 溴于产物分子其机理如下:首先Cl⁻和Br⁻在 溶液中进行交换,生成Cl-Fe-Br分子,然后再与p-CH₃PhSNa 发生反应。这一过程通 过取反应的中间产物和最终产物作红外光谱研究得到了证实。

$$FeCl_{2} + Et_{4}NBr \xrightarrow{CH_{3}CN}Cl-Fe-Br+Et_{4}NCl$$

$$3Cl-Fe-Br+3p-CH_{3}PhSNa+3Et_{4}NCl \xrightarrow{CH_{3}CN}(Et_{4}N)_{3}(Fe_{3}(p-CH_{3}PhS)_{3})$$

$$Cl_{3}Br_{3}]+3NaCl$$

晶体结构与分子构象 化合物1和2的阴离子的主要键长、键角分别列于表3和表4。

•••

表 5 〔Fe₃(p-CH₃PhS)₃Br₃Cl₃]³[−]的主要健长(Å)与健角(°) Table 3 Selected Bond Distances (Å) and Bond Angles (°) of $(Fe_3(p-CH_3PhS)_3Br_3Cl_3]^{3-1}$ Fe(1)-Fe(2) 4.409(1) Fe(1) - X(11)2.374(2) Fe(2) - Fe(3)4.389(1) Fe(1)-X(12) 2.366(2) Fe(3)-Fe(1) Fe(2)-X(21) 4.420(1) 2.372(2) Fe(1)-S(2) 2.355(2) Fe(2)-X(22) 2.328(2) Fe(1)-S(3) 2.351(2) Fe(3)-X(31) 2.340(2) Fe(2)-S(2) 2.336(2) Fe(3)-X(32) 2.354(2) Fe(2)-S(3) 2.363(2) S(1) - C(11)1.774(7)

Fe(3)-S(1)	2.342(2)	S(2)-C(21)	1.771(7)
Fe(3)-S(2)	2.349(2)	S(3)-C(31)	1.770(7)
S(2)-Fe(1)-S(3)	99.93(8)	S(2)-Fe(3)-X(31)	112.24(7)
S(1)-Fe(2)-S(3)	100.62(8)	S(2) - Fe(3) - X(32)	111.08(7)
S(1)-Fe(3)-S(2)	100.28(8)	X(11) - Fe(1) - X(12)	110.07(7)
S(2)-Fe(1)-X(11)	110.64(7)	X(21)-Fe(2)-X(22)	109.90(7)
S(2)-Fe(1)-X(12)	112.46(7)	X(31) - Fe(3) - X(32)	110.58(6)
S(3)-Fe(1)-X(11)	113.33(7)	Fe(2)-S(1)-Fe(3)	139.56(9)
S(3)-Fe(1)-X(12)	110.11(7)	Fe(1)-S(2)-Fe(3)	139.95(10)
S(1)-Fe(2)-X(21)	112.95(7)	Fe(1)-S(3)-Fe(2)	138.54(9)
S(1)-Fe(2)-X(22)	110.35(8)	Fe(2)-S(1)-C(11)	111.6(3)
S(3)-Fe(2)-X(21)	110.86(7)	Fe(3)-S(1)-C(11)	108.8(3)
S(3)-Fe(2)-X(22)	111,90(8)	Fe(1)-S(2)-C(21)	109.4(3)
S(1)-Fe(3)-X(31)	109.35(8)	Fe(3)-S(2)-C(21)	110.6(3)
S(1)-Fe(3)-X(32)	112.96(7)	Fe(1) - S(3) - C(31)	110.6(3)
	-	Fe(2)-S(3)-C(31)	109.1(3)
	1		· ·

在化合物1晶体中, 阴离子Fe₃S₃骨架为 Fe、S 交叉排列的六元环。Fe 原子周围由 硫和卤素原子作四面体配位,Br和Cl原子则统计分布于六元环的两侧。在Fe₃S₃核上,沿 S(3)…Fe(3)方向有准C₂对称性。三个铁原子分列于三个硫原子所在平面的 两侧, Fe(1)、Fe(2)、Fe(3)分别与三硫平面相距0.098、0.180和-0.094Å。整个六元环 呈船型畸变。Fe(1)-S(2)-S(1)-Fe(2)虽基本共面, 但有一个2°的扭转角,实 际上六元环呈轻度扭转船型。见图1、2。甲基和有机硫原子均不与苯环共面, 三个苯 环平面和三硫平面的二面角分别为5.8、6.1和8.9°。

在化合物2晶体中, 阴离子Fe₃S₃六元环沿S(2)…Fe(2)轴呈准C₂对称。三个铁 原子分列于三个硫原子所在平面的两侧,整个六元环呈船型畸变。见图3。

化合物1的Fe-S键长平均为2.349Å, 与铁氧还蛋白中相应的Fe-S键相近, 但在内 角大小上有所差别, 这可能由于船型畸变程度有所不同所致。

妻 4	$[Fe_3(p-CH_3PhS)_3Cl_6]^3$	□的主要體长(2	ふう与徳角 (゜)
-----	-----------------------------	----------	------------------

Table 4	Selected	Bond	Distances(Å)and	Bond	Angles(')
				-	

	of [Fe, (p-CH	l, PhS), Cl ₀] ³	
Fe(1)—Fe(2)	4.406(1)	Fe(1)—Cl(1)	2.260(2)
Fe(1)—Fe(3)	4.422(1)	Fe(1)—C1(2)	2.261(2)
Fe(2)—Fe(3)	4.399(1)	Fe(2)-C1(3)	2.268(2)
Fe(1)-S(2)	2.361(2)	Fe(2)—C1(4)	2.266(2)
Fe(1)-S(3)	2.353(2)	Fe(3)—Cl(5)	2.265(2)
Fe(2)-S(1)	2.361(2)	Fe(3)—C1(6)	2.254(2)
Fe(2)-S(3)	2.338(2)	S(1)-C(11)	1.779(6)
Fc(3)-S(1)	2.358(2)	S(2)-C(21)	1.789(6)
Fe(3)-S(2)	2.345(2)	S(3)-C(31)	1.783(5)
S(2)-Fe(1)-S(3)	99.64(6)	S(2)-Fe(3)-Cl(6)	109.51(7)
S(1) - Fc(2) - S(3)	101.16(6)	Cl(1)-Fe(1)-Cl(2)	113.30(9)
S(1)-Fe(3)-S(2)	101.09(6)	C1(3)—Fe(2)—C1(4)	111.88(7)
S(2)-Fe(1)-Cl(1)	109.70(7)	C1(5)—Fe(3)—C1(6)	112.34(8)
S(2)-Fe(1)-Cl(2)	110.96(8)	Fe(2)—S(1)—Fe(3)	137.62(8)
S(3)—Fe(1)→Cl(1)	111.93(8)	Fe(1)-S(2)-Fe(3)	139.91(7)
S(3)-Fe(1)-Cl(2)	110.51(8)	Fe(1)-S(3)-Fe(2)	139.82(7)
S(1)-Fe(2)-Cl(3)	107.48(7)	Fe(2) - S(1) - C(11)	109.9(2)
S(1)-Fe(2)-Cl(4)	112.82(7)	Fe(3) - S(1) - C(11)	110.8(2)
S(3)-Fe(2)-Cl(3)	111.70(7)	Fe(1) - S(2) - C(21)	111.6(2)
S(3)-Fe(2)-Cl(4)	111.29(7)	Fe(3)-S(2)-C(21)	108.5(2)
S(1)-Fe(3)-Cl(5)	112.40(7)	Fe(1)-S(3)-C(31)	112.0(2)
S(1)-Fe(3)-Cl(6)	109.51(7)	Fe(2)-S(3)-C(31)	107.9(2)
S(2)-Fe(3)-Cl(5)	109.38(7)		

- 图 1 〔Fe,(p-CH,PhS),Br,Cl,]¹ 阴离子的结构
- Fig. 1 Structure of the anion $[Fe_3(p-CH_3PhS)_3Br_3Cl_3]^3$
- 图 2 化合物1中Fe,S,的船型结构 Fig. 2 Boat form conformation of Fe,S; in compound 1

图 3 Fe₃(p-CH₃PhS)₃Cl₄]³⁻阴离子的结构 Fig. 3 Conformation of the anion [Fe₃(p-CH₃PhS)₃Cl₄]³⁻

致需: 本工作得到我所化学分析组、何玲洁、福建省医科所紫外组协助,康北笙同志对本工作的 讨论提出有益意见,在此一并致谢。

多考文献

- [1] Ghost, D., O'Donnell, S., Furey, Jr, W., Robbins, A. H., Stout, C.D., J. Mol. Biol., 158, 73-109 (1982).
- [2] Hagen, K.S., Holm, R.H., J.A.C.S., 104, 5496-5497 (1982).
- [3](a)中国科学院福建物质结构研究所固氮组,科学通报,20,540(1975),
 (b)中国科学院福建物质结构研究所固氮组,科学通报,25,191(1980),
 (c) Lu, J.-X., Nitrogen Fixation, Vol.1, ed.by Newton, W.E., Orme-Johnson, W.H., University Park Press, Baltimore, p.343(1980).
- [4] Liu Ping, Huang Liangren, Wang Lingling, Kang Beisheng, Lu Jiaxi, J.Struct.Chem. (China), 3(2), 165-137 (1984).
- [5] Huang Liangren, Liu Ping, Wang Lingling, J. Struct. Chem. (China), 4(1), 72-74(1985).

INVESTIGATION OF SYNTHESIS AND STRUCTURE OF TWO NEW Fe₃S₃ CLUSTER COMPOUNDS

Liu Ping Huang Liangren Yang Yu Lu Jiaxi

(Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou)

The new cluster compounds $[Et_4N]_3[Fe_3(p-CH_3PhS)_3Cl_3Br_3](1)$ and $[Et_4N]_3[Fe_3(p-CH_3PhS)_3Cl_6](2)$ have been synthesized through one step reaction. The skeletons of anions in compounds 1 and 2 are six membered in ring of Fe, S-alternative arrangement, they are in boat form.

The crystal of compounds 1 and 2 are triclinic, with space group P_1 . Unit cell paraments of the crystal 1 are a = 12.801(2), b = 13.780(4), c = 19.097(2)Å, a = 101.39(2), $\beta = 101.92(11)$, $\gamma = 106.15(2)^\circ$, Z = 2. Unit cell parameters of the crystal 2 are a = 12.226(4), b = 15.323(2), c = 17.012(2)Å, a = 70.72(1), $\beta = 88.65(2)$, $\gamma = 72.51(2)^\circ$, Z = 2.

Keywords Fe₃S₃ cluster compound crystal structure