$\mathbf{X}(2,2) \rightarrow \mathbf{K}$ 一联吡啶) 单氯合铜配合物

 $(Cu(2,2'-bpy)_2Cl)(BF_4)$

的合成与晶体结构

蔡进华 毛少平

(中国科学院福建物质结构研究所 福州)

本文报道了[Cu(2,2'-联吡啶)₂Cl](BF₄)配合物的合成和晶体结构、晶体属 单斜晶系,空间群 $P2_{1/a}$,晶胞参数为:a=10.761(1),b=12.069(1),c=16.146(3)Å, $\beta=104.7(1)^\circ$,Z=4.在CAD~4四园衍射仪上收集衍射强度数据; 重原 子法解出结构,并经全矩阵最小二乘法修正结构,最后的偏离因子 $R=0.05^\circ$, $R_{\Psi}=0.058$ 。

结构测定得出(Cu(2,2'-bpy),Cl)*配阳离子中的Cu原子为五配 位 的,它 是 由两个2,2'-联吡啶上的 4 个N原子和1个Cl原子配位而成的,CuN₄Cl配位球 略 有畸变的三方双锥的构型,

关键词:双(2,2'-联吡啶)单氯合铜配合物 晶体结构

2,2'-联吡啶(2,2'-bpy)和Cu(ClO₄)₂作用可以生成[Cu(2,2'-bpy)₂](ClO₄)₂配 合物,它进一步与某些简单的阴离子或中性小分子作用,则生成[Cu(2,2'-bpy)₂]x]y 型的配合物。这里x为卤素原子、CN⁻、NO²。或H₂O、NH₃等,y为负离子。若以卤离 子和它作用,则生成[Cu(bpy)₂x]⁺阳离子(x=Cl、Br和I等)⁽¹⁾。这类配合物由于 它们的化学结构、磁学性质和具有的某些催化作用⁽²⁷⁾,因此对它的研究颇为兴趣。所 生成的[Cu(2,2'-bpy)₂x]⁺配合物,Cu原子一般是五配位的(三方双锥或四方锥构型), 但在某些情况下,由于溶剂分子(例如H₂O分子)的参与配位,也可以形成六配位的 配合物。我们以2,2'-联吡啶与[Cu(BF₄)₂]作用,在HCl的存在下,得到了一种深蓝 色的晶体,分子式为[Cu(2,2'-bpy)₂Cl](BF₄)。并测定了它的结构。

实验部分

-、〔Cu(2,2'-bpy)₂Cl](BF₄)的合成

将0.24克的Cu(BF,)2溶于10ml(70%)的乙醇中,并在其中滴加入 1N的HCl1.0ml。

本文于1986年2月24日收到,修改稿于1987年10月17日收到,

另把2,2′-联吡啶0.31克溶于10ml的无水乙醇中,成为乙醇溶液。把上述两溶液混合, 此时溶液呈蓝色。将它在50℃水浴上加热约10分钟,过滤之后,滤液置于小培养皿中, 数天之后结出蓝色的晶体。可作元素分析和X-射线衍射之用。

元素分析值(%): Cu12.89, C48.23, N11.36, H3.11, Cl7.31, 按化学式 (CuC20N4H16ClBF4)计算: (Cu12.76, C48.22, N11.25, H3.24, Cl7.12。

二、X射线衍射实验

在CAD-4四园衍射仪上测定晶体的结晶学参数和收集衍射 强 度。晶 体 的 空 间 群 $P2_{1/a}$ 。晶胞参数为: a = 10.761(1), b = 12.069(1), c = 16.146(3) Å, $\beta = 104.66(2)$ °, V = 2028.3 Å³。晶体密 度 $d_{SW} = 1.61$ 克/厘米³, $d_{H} = 1.631$ 克/厘米³, Z = 4。用 Mo K_a 射线, $\omega - 2\theta$ 扫描技术, 在 1° $\leq \theta \leq 27$ °范围内共收 集 3897 个 独 立 衍 射; 其 中 $\leq 3.4 \sigma$ (I₀)的有1939个衍射。强度经Lp因子校正和PSI扫描半经验吸收校正。

三、晶体结构 的测定

由三维Patterson函数的分析和随后的Fourier合成,初步得到全部非氢原子的位置 坐标,然后以全矩阵最小二乘法修正结构数轮,此时R = 0.098。于是以加氢程序加入H 原子(C-H=1.08Å),进行最后修正(H原子位置坐标不修正,温度因子作各向同性修 正)。最后的偏离因子,对于1339个(I \ge 3.4 σ (I₀))独立衍射为:R = 0.051, $R_* = 0.058$ 。

有关的原子参数和热参数(带标准偏差)列在表1,主要的键长和键角值列在表 2。

结构的描述和讨论

晶体中含有[Cu(2,2'-bpy)₂Cl]*配阳离子和四配位的[BF₄]⁻阴离子。在阳离子中 Cu 原子周围有 4 个N原子和 1 个 Cl 原子与之配位,构成五配位的CuN₄Cl 配位球 (Chromophore)。它具有扭歪的三方双锥构型(图1)。4 个Cu-N键长在1.984(4)~ 2.116(4) Å之间,但轴向上的Cu-N(1)和Cu-N(3)键长比在赤道面上的Cu-N(2)和 Cu-N(4)键长平均短约0.11Å。Cu-Cl键长2.258(2) Å,属于正常范围。 $\angle N(1)$ -Cu-N(3)键角为 174.6(2)°,略有些弯曲。Cu 原子位于N(2)、N(4)和 Cl 原子的平面上。 $\angle N(2)$ -Cu-Cl=135.3(1)°, $\angle N(4)$ -Cu-Cl=127.5(1)°,是不对称的,且大于120°。 而 $\angle N(2)$ -Cu-N(4)=97.2(2)°,则小与120°。此外, $\angle N(1)$ -Cu-Cl=93.4(2)°和 $\angle N(3)$ -Cu-Cl=91.9(2)°则是大于90°。因此Cu原子周围是扭歪的三方双锥构型的配 位。图 2 示出CuN₄X配位球。它与大多数的这类配合物有相似的构型⁽³⁾。即 a,和 a₅ 的角是大于90°, a₅的角是小于120°。

至于配合物的联吡啶配位基的各个吡啶环都是平面型。每个联吡啶的两个吡啶环平面间的扭曲角度分别为3.8°和10.9°,这与这类化合物中的情况是一致的い。 $\angle N(1)^-$ Cu-N(2)=79.8(2)°和 $\angle N(3)$ -Cu-N(4)=79.4(2)°,也无异常。

配合物中的阴离子〔BF₄〕⁻的构型,基本上是四面体的。B-F键长在1.314~1.369Å 之间,平均1.348Å。∠F-B-F角103.5~112.8°,平均109.3°,与四面体的角109.5°相 近。此外,〔BF₄〕⁻没有参加与〔Cu(2,2'-bpy)₂C1〕⁺阳离子的半配位⁽⁵⁾。 102

,

.

.

•

表1 非氢原子坐标参数和热参数及其标准偏差值

Table 1Atomic Coordinate and Thermal Parameter andTheir Estimated Standard Deviations

atom	Х	Υ	Z	Beg.
Cu	0.2651(1)	0.0429(1)	0.1367(1)	3.38(1)
C1	0.2744(2)	-0.1440(1)	0.1475(1)	3.90(4)
N(1)	0.3059(4)	0.0550(4)	0.0237(3)	3.4 (1)
N(2)	0.3992(4)	0.1704(4)	0.1621(3)	3.4 (1)
N(3)	0.2221(4)	0.0462(5)	0.2491(3)	3.8 (1)
N(4)	0.0987(4)	0.1436(4)	0.1068(3)	3.2 (1)
C(11)	0.3972(5)	0.1275(5)	0.0184(4)	3.4 (1)
C(12)	0.4404(6)	0.1352(5)	-0.0554(4)	4.3 (2)
C(13)	0.3859(7)	0.0706(6)	-0.1240(4)	4.9(2)
C(14)	0.2920(7)	-0.0024(6)	-0.1183(4)	4.7 (2)
C(15)	0.2554(6)	-0.0091(6)	-0.0430(4)	4.0(1)
C(21)	0.4468(6)	0.1958(5)	0.0956(4)	3.5 (1)
C(22)	0.5372(7)	0.2796(6)	0.1026(4)	4.9(2)
C(23)	0.5731(7)	0.3374(6)	0.1763(5)	5.2 (2)
C(24)	0.5245(7)	0.3132(6)	0.2447(5)	3.3 (2)
C(25)	0.4380(6)	0.2309(6)	0.2337(4)	4.6 (2)
C(31)	0.1168(6)	0.1017(5)	0.2541(4)	3.3(1)
C(32)	0.0740(6)	0.0994(6)	0.3268(4)	4.0(1)
C(33)	0.1403(7)	0.0407(6)	0.3960(6)	4.8 (2)
C(34)	0.2501(7)	-0.0127(6)	0.3929(4)	4.9(2)
C(35)	0.2884(6)	-0.0105(6)	0.3179(4)	4.3 (2)
C(41)	0.0520(5)	0.1641(5)	0.1760(4)	3.1 (1)
C(42)	-0.0443(6)	0.2400(6)	0.1724(4)	4.4 (2)
C(43)	-0.0922(6)	0.2978(6)	0.0978(5)	5.0 (2)
C (44)	-0.0460(6)	0.2778(6)	0.0283(4)	4.5 (2)
C(45)	0.0484(6)	0.1997(5)	0.0353(4)	4.0 (2)
В	0.2704(8)	-0.1060(8)	0.6317(6)	4.9 (2)
F(1)	0.1726(5)	-0.0498(5)	0.5804(3)	10.5 (2)
F(2)	0.3323(5)	-0.1385(5)	0.5888(3)	10.9 (2)
F(3)	0.3527(7)	-0.0299(5)	0.6786(4)	12.2 (2)
F(4)	0.2292(4)	-0.1646(4)	0.6923(3)	7.8 (1)

Table 2 Bond Lengths (Å) and Bond Angles (°)						
bond length	(<u>Å</u>)	!				
Cu-Cl	2.258(2)	N(3)-C(31)	1.337(7)			
$C_u - N(1)$	1.987(4)	C(31)-C(32)	1.366(7)			
Cu-N(2)	2.077(4)	C(32)—C(33)	1.362(9)			
Cu—N(3)	1.984(4)	C(33)-C(34)	1.357(9)			
Cu-N(4)	2.116(4)	C(34)—C(35)	1.375(9)			
N(1) - C(11)	1.344(7)	C(35) - C(3)	1.345(7)			
U(11)-C(12)	1.389(8)	N(4) - C(41)	1.357(6)			
C(12)-C(13)	1.359(9)	C(41)—C(42)	1.375(8)			
C(13)—C(14)	1.361(9)	C(42)—C(43)	1.374(9)			
C(14)-C(15)	1.372(8)	C(43) - C(44)	1.359(8)			
C(15) - N(1)	1.326(7)	C(44)—C(45)	1.369(8)			
N(2) - C(21)	1.338(6)	C(45) - C(4)	1.330(7)			
C(21)-C(22)	1.388(8)	B - F (1)	1.345(9)			
C(22)-C(23)	1.349(8)	B-F(2)	1.314(8)			
C(23)—C(24)	1.370(9)	B-F(3)	1.364(9)			
C(24)—C(25)	1.342(9)	B-F(4)	1.369(8)			
C(25)-N(2)	1.342(7)	1				
(bond angl	e(°))	1				
N(1)-Cu-Cl	93.4(2)	N(2)-Cu-N(4)	97.2(2)			
N(2)—Cu—Cl	135.3(1)	$N(3) - C_u - N(4)$	79.4(2)			
N(3)—Cu—Cl	91.9(2)	F(1) - B - F(2)	112.8(7)			
N(4)—Cu—Cl	127.5(1)	F(1) - B - F(3)	107.3(7)			
N(1)—Cu—N(2)	79.8(2)	F(1) - B - F(4)	110.9(7)			
N(1)-Cu-N(3)	174.6(2)	F(2) - B - F(3)	109.6(8)			
$N(1) - C_u - N(4)$	96.9(2)	F(2) - B - F(4)	112.3(7)			
$N(2) - C_u - N(3)$	96.7(2)	F(3) - B - F(4)	103.5(7)			

表 2 主要的维长(Å)和维角(°)值

.

•

-

.

图2 CuN4X配位球 Fig. 2 Chromophore of CuN4X

4 卷

参考文献

- [1] Barclay, G.A., Hoskins, B.F., and Kennard, C.H.L., J.Chem.Soc., 5691(1963).
- (2) Firouzhabadi, H., etal., Tetrahedron, 40, 5001(1984).
- (3] Hathaway. B.F. and Murphy, A., Acta Cryst., B36, 295(1980).
- (4) Stephens, F.S., J.Chem.Soc., Dalton, 2081(1969).
- [5] Tomlinson, A.A.G., Hathaway, B.J., Billing, D.E., and Nichols, P.,J.Chem.Soc. (A), 65(1969).

STRUCTURE OF BIS(2,2'-BIPYRIDYL)MONOCHLO-ROCUPPER(I) TETRACHLORO-BORATE, Cu(2,2'-BPY)₂Cl(BF₄)

Cai Jinhua Mao Shaoping

(Fujian Institute of Research on the Structure of Matter, Academia Sinica, Fuzhou)

The complex compound $[Cu(2,2'-bpy)_2Cl](BF_4)$ was obtained when 2,2'-bpy react with $Cu(BF_4)_2$ in existence of HCl. The crystals are dark blue in colour, belonging to monoclinic, space group $P2_{1/a}$, with a=10.761(1), b=12.069(1), c=16.146(3)Å, $\beta=104.7(1)^\circ$, Z=4. Intensities for 3897 reflexions were collected on CAD-4 Diffractometer. The structure was solved by heavy atom method and refined by full-matrix least-squares to a R_r of 0.051 for 1939 independent observed reflections with I $\geq 3.4 \sigma(I)$.

The structure consists of a distorted five-coordinated $[Cu(2,2'-bpy)_2Cl]^+$ cation and $[BF_4]^-$ anion, and the complex cation involves an asymmetrical angular distortion of the trigonal-bipyramidal CuN₄Cl chromophore.

Keywords bis(2,2'-bipyridyl)monochloro cupper complex crystal structure