

二苄亚砜硝酸钕的晶体结构

胡宁海 刘永盛 金钟声苏 锵 吕玉华

(中国科学院长春应用化学研究所)

二苄亚砜硝酸钕Nd(NO₃),·((C₆H, CH₂)₂SO],属三斜晶系,PI空间群,晶 胞参数: a=9.835(2), b=12.445(2), c=19.971(5) Å, a=104.13(2)°, $\beta=$ 90.34(2)°, $\gamma=74.96(1)$ °, Z=2.晶体结构用重原子法解出,经最小二乘修正后 R因子为0.031. 钕离子由九个氧配位,形成稍歪扭的三帽三方棱柱配位多面体,其 中一个三角面由三个二苄亚砜(DBSO)提供的氧形成,其他氧原子则由硝酸根提 供,平均Nd-O(DBSO)=2.379 Å, Nd-O(NO₃)=2.536 Å。

关键词: 钕 二苄亚砜 晶体结构

由于亚砜同希土金属的特殊配合性能,使这类化合物在萃取,催化及改善希土离子的发光性能方面展示了可喜的前景⁽¹⁾。弄清"镧系收缩"及亚砜的不同取代基对 配 位构型及希土近邻环境对称性的影响,有助于了解结构与性能之间的关系。我们曾对二甲亚砜(DMSO)^(2,3)及二苯亚砜(DPSO)⁽⁴⁾希土配合物的晶体结构作过研究。本文测定了二苄亚砜硝酸钕的晶体结构,讨论了其配位构型和成键特征。

实 验

将硝酸钕的甲醇溶液和二苄亚砜的甲醇溶液混合、搅匀,置于干燥器中慢慢析出二 苄亚砜硝酸钕晶体

选取 $0.4 \times 0.4 \times 0.2$ mm³ 的单晶,在 R 3m/E 型四园衍射仪上收集衍射强度数据。 MoK_a辐射($\lambda = 0.71069$ Å), ω 扫描方式,在 $0 < 2\theta < 48^{\circ}$ 范围内收集 7173 个独立 的衍射,其中 I>1.5 σ (I)的可观测衍射为6481个。强度数据经LP因子和 ψ 扫描经验吸收校正。晶体学参数:

分子式 $Nd(NO_3)_3 \cdot [(C_8H_5CH_2)_2SO]_3$ M = 1021.3 晶 系 三 斜 空间群 Pī

本文于1987年3月24日收到。

_

.

表 1 非氢原子坐标(×104)及等效热参数(×103)

Table 1 Coordinates(×10⁴) and Equivalent Thermal

Parameters(× 10 ³)	for	Non-hydrogen Ate	oms
---------------------------------	-----	------------------	-----

	х	Y	Z	U
Nd	598(1)	2172(1)	2525(1)	42(1)
S(1)	- 3098(1)	2612(1)	2884(1)	45(1)
S(2)	- 235(1)	5376(1)	2751(1)	58(1)
S(3)	- 1672(1)	2834(1)	1102(1)	55(1)
0(1)	- 1585(2)	2340(2)	3091(1)	54(1)
0(2)	-424(3)	4180(2)	2637(2)	76(1)
O(3)	-770(3)	2137(2)	1541(1)	66(1)
0(11)	2101(3)	2848(2)	1734(1)	74(1)
O(12)	2902(2)	2715(2)	2721(1)	63(1)
O(13)	3946(3)	3436(3)	2066(2)	95(2)
O(21)	863(3)	2914(2)	3822(1)	65(1)
O(22)	1647(3)	1007(2)	3388(1)	63(1)
Q(28)	1803(3)	1804(3)	4474(1)	88(1)
O(31)	2267(3)	409(2)	1786(2)	84(1)
O(32)	329(3)	150(2)	2110(1)	66(1)
O(33)	1819(4)	- 1228(3)	1392(2)	124(2)
N(1)	3008(3)	3015(2)	2169(2)	60(1)
N(2)	1448(3)	1938(3)	3913(2)	58(1)
N(3)	1472(4)	- 253(2)	1752(2)	72(1)
C(1)	- 4127(4)	3176(3)	3699(2)	52(1)
C(11)	-3983(3)	4354(3)	4057(2)	47(1)
C(12)	- 2862(4)	4469(3)	4460(2)	64(2)
C(13)	- 2775(5)	5562(4)	4808(2)	78(2)
C(14)	-3783(5)	6512(3)	4756(2)	81(2)
C(15)	- 4885(5)	6403(3)	4351(2)	84(2)
C(16)	-4982(4)	5324(3)	4002(2)	67(2)
C(2)	- 3479(4)	1222(3)	2596(2)	50(1)
C(21)	- 3449(3)	582(3)	3141(2)	44(1)
C(22)	- 4705(4)	521(3)	3422(2)	61(2)
C(23)	-4702(5)	- 37(4)	3939(2)	79(2)
C(24)	- 3448(5)	- 531(3)	4183(2)	83(2)
C(25)	- 2206(5)	- 480(3)	3911(2)	76(2)
C(26)	- 2183(4)	62(3)	3380(2)	58(1)
C(3)	883(4)	5503(3)	3474(2)	71(2)
C(31)	1164(1)	6665(3)	3705(2)	58(1)
C(32)	1782(5)	7117(4)	3257(2)	83(2)
C(33)	2036(5)	8203(4)	3488(3)	96(2)
C(34)	1727(5)	8777(4)	4171(3)	88(2)

.

١

/4 /4 14	无	机	化
----------	---	---	---

学

24	۰.	-	
-			
	-		

126

•

.

宴表 1				
	X	Y	Z	U
C (35)	1148(4)	8321(4)	4613(2)	76(2)
C(36)	841(4)	7287(4)	4381(2)	64(2)
C(4)	- 1887(4)	6304(3)	3166(2)	65(2)
C(41)	- 3016(4)	6444(3)	2666(2)	55(1)
C (42)	- 3493(5)	7457(3)	2474(2)	73(2)
C (43)	-4612(5)	7604(4)	2052(2)	85(2)
C (44)	- 3231(5)	6737(4)	1803(2)	84(2)
C (45)	- 4746(5)	5710(4)	1974(2)	83(2)
C (46)	- 3663(4)	5572(3)	2411(2)	71(2)
C(5)	- 479(4)	3439(4)	709(2)	71(2)
C (51)	- 1224(4)	4127(4)	231(2)	68(2)
C (52)	- 1000(5)	3702(5)	- 455(2)	93(3)
C (53)	-1694(6)	4397(6)	-910(3)	116(3)
C (54)	- 2597(7)	5420(6)	-622(3)	126(3)
C (55)	- 2831(7)	5847(6)	69(3)	125(3)
C (56)	-2131(5)	5186(4)	491(3)	92(2)
C(6)	-1911(5)	1759(4)	352(2)	75(2)
C (61)	- 2764(4)	1036(3)	563(2)	63(2)
C (62)	-2114(5)	-9(4)	694(2)	84(2)
C (63)	- 2945(7)	-677(4)	882(3)	100(3)
C (64)	- 4357(7)	- 274(5)	931(2)	95(3)
C (65)	-5002(5)	765(5)	826(2)	90(2)
C (66)	-4212(5)	1423(4)	642(2)	78(2)

表 2 主要體长(^A)和體角([°])

Table 2 Selected Bond Lengths(Å) and Angles()

_				
	Nd-O(1)	2.368(2)	S(3) C(6)	1.808(4)
	Nd-O(2)	2.394(2)	N(1)-O(11)	1.261(4)
	Nd-O(3)	2.374(3)	N(1) - O(12)	1.261(4)
	Nd-O(11)	2.590(3)	N(1)-O(13)	1.214(5)
	Nd-O(12)	2.530(3)	N(2)-O(21)	1.259(4)
	Nd-O(21)	2.564(2)	N(2)-O(22)	1.263(4)
	Nd-O(22)	2.492(3)	N(2)-O(23)	1.208(4)
	Nd—O(31)	2.504(2)	N(3) - O(31)	1.266(5)
	Nd-O(32)	2.333(3)	N(3)-O(32)	1.252(4)
	S(1)-O(1)	1.517(2)	N(3)-O(33)	1.212(4)
	S(2)-O(2)	1.510(3)	C(1) - C(11)	1.508(5)
	S(3)-O(3)	1.507(3)	C(2)-C(21)	1.493(5)
	S(1) - C(1)	1.806(3)	C(3)-C(31)	1.504(5)

续表 2			•
S(1)-C(2)	1.820(4)	C(4)-C(41)	1.493(5)
S(2)-C(3)	1.811(4)	C(5)—C(51)	1.499(6)
S(2)-C(4)	1.799(3)	C(6) - C(61)	1.507(7)
S(3)—C(5)	1.821(5)		
O(1) - S(1) - C(1)	103.9(1)	S(2)-C(4)-C(41)	112.1(2)
$O(1) \rightarrow S(1) - C(2)$	105.0(1)	S(3)-C(5)-C(51)	111.4(3)
C(1) - S(1) - C(2)	100.5(2)	S(3)-C(6)-C(61)	109.7(3)
O(2) - S(2) - C(3)	104.0(2)	O(11) - N(1) - O(12)	116.6(3)
O(2) - S(2) - C(4)	104.3(2)	O(11)-N(1)-O(13)	122.4(4)
C(3)-S(2)-C(4)	100.1(2)	O(12)-N(1)-O(13)	121.0(3)
O(3)-S(3)-C(5)	105.2(2)	O(21)-N(2)-O(22)	116.7(3)
O(3) - S(3) - C(6)	103.5(2)	O(21)-N(2)-O(23)	122.1(3)
C(5)—S(3)—C(6)	99.3(2)	O(22)-N(2)-O(23)	121.2(3)
S(1)-C(1)-C(11)	111.3(3)	O(31) - N(3) - O(32)	116.7(3)
S(1)-C(2)-C(21)	115.2(2)	O(31)-N(3)-O(33)	120.9(4)
S(2)-C(3)-C(31)	113.7(3)	O(32) - N(3) - O(33)	122.5(4)

a = 9.835(2)Å	b = 12.445(2)Å	c = 19.971(5)Å
$\alpha = 104.13(2)^{\circ}$	$\beta = 90.34(2)^{\circ}$	$\gamma = 74.96(1)^{\circ}$
$V = 2285.0(8) \text{\AA}^{3}$	Z = 2	$D_{\rm c}$ = 1.48 g \cdot cm ⁻³

晶体结构用重原子法解出。对61个非氢原子结构参数进行块矩阵最小二乘修正后, 用差值Fourier合成求出全部氢原子坐标,最终的 R=0.031, R_{*}=0.030。 非氢原子坐 标及等效各向同性热参数列于表1。键长、键角列于表2。

晶体结构计算工作使用SHELXTL程序,在Eclipse S/140计算机上进行。

结构讨论

结构分析表明, 二苄亚砜硝酸钕分子是由三个硝酸根和三个二苄亚砜与 Nd 配合 而成。图 1 给出分子结构和原子编号。

希土离子 Nd 与周围九个氧成键, 配位氧原子围绕中心离子形成稍歪扭的三帽三方 棱柱多面体(图2)。三方棱柱的一个三角面(平面1)由来自亚砜的三个氧O(1), O(2), O(3)组成, 另一个三角面(平面2)由三个硝酸根各提供一个氧O(31), O(12), O(22)组成, 而硝酸根的另一个氧O(32),O(11),O(21)则作为矩形面上的帽顶组成平面 3。三个平面近似平行, 它们之间的最大夹角为2.8°。理想的三帽三方棱柱多面体的对 称性为 D_{3k} 。实际上, 九个配位氧的周围环境不是等同的, 分属于两类不同的配位基 团。另外,三个硝酸根均以双齿参与配位, 在氮原子 sp^2 杂化轨道方向性的限制及配体 原子相互作用的影响下,三个帽顶氧均各自向同硝酸根的三角面氧靠近,以致平面3 趋 近平面2,这样使整个配位多面体偏离 D_{3a} 对称性而变得 稍 微 歪 扭。在 Y(NO₃)₃. (DMSO)₃⁽²⁾和Er(NO₂)₃ (DPSO)₃⁽⁴⁾结构中,配位多面体也都是三帽三方棱柱体。 前者的三个亚砜氧组成一个三角面,而后者由于苯基的空间阻碍,三个亚砜氧不在同一 三角面上。当苯基被苄基取代后,由于CH₂基团的引入使单齿配体的原子链增长,其空 间效应随之减小,三个亚砜氧又回到同一三角面上来。

图 1 Nd(NO₃), ·(DBSO), 的分子结构 Fig. 1 Molecular structure of Nd(NO₃), ·(DBSO),

图 2 配位多面体 Fig. 2 Coordniation polyhedron

结构中Nd-O(DBSO)=2.379Å,Nd-O(NO),)=2.536Å,与同类结构相近(5)。 多面体中不同配体的氧原子之间的距离为2.91~5.33Å,与 Van der Waals 键距值相符,可说明此配合物处于配位饱和状态,因而晶白较稳定。二苄亚砜分子在配位过程中可通过C-C及 S-C 单键的旋转达到稳定的构象。苄基平面相对于 S-C-C 平面的扭角在56.3°~83.4°之间。而关于 S-C 键的扭角则表明与它们相联的原子均以±17°近于顺式交叉(±60°)或±6°近于反式平面(180°)的构象存在。

参考文献

[1]苏锵、吕玉华,应用化学,2(1),1(1985).
[2]林永华、胡宁海等,物理学报,32,400(1983).
[3]林永华、胡宁海等,化学学报,42,372(1984).
[4]江建生、胡宁海等,中国科学技术大学学报,14,154(1984).
[5]Асланоз, Л.А., Солсва, Л.П., Nорап-Rошип, М.А., Гоухоерч, С. С., ЖУРНАЛ СТРУКТУРНОП ХИМИИ, 13, 655(1972).

CRYSTAL STRUCTURE OF TRIS(DIBENZYL SULPHOXIDE)TRINITRATONEODYMIUM

Nu Ninghai Liu Yongsheng Jin Zhongsheng Su Qiang Lu Yuhua (Changchun Institute of Applied Chemistry, Academia Sinica)

The title compound, $Nd(NO_3)_3 \cdot ((C_6H_5CH_2)_2SO)_3$, crystallizes in triclinic space group P1 with unit cell parameters a = 9.835(2), b = 12.445(2), c = 19.971(5)Å, $\alpha = 104.13(2)^\circ$, $\beta = 90.34(2)^\circ$, $\gamma = 74.96(1)^\circ$ and Z = 2. The structure was solved by heavy-atom method and refined by leastsquares procedures to a final R 0.031. The neodymium is coordinated by nine oxygen atoms which form a slightly distorted tricapped trigonal prism. The oxygen atoms of three dibenzyl sulphoxide(DBSO) occupy a triangular face of the trigonal prism while the oxygen atoms from nitrate groups occupy the remaining sites. The average distance Nd-O(DBSO) is 2.379Å and Nd-O(NO_3) 2.536Å.

Keywords neodymium dibenzyl sulphoxide crystal structure