含氧酸盐热反应法制备Y-Ba-Cu-O系 超导膜的X射线光电子能谱(XPS)研究

庄瑞舫 邱家彬

(南京大学配位化学研究所)

蔡士德

(南京大学现代分析中心)

用X射线光电子能谱(XPS)法研究了在基体 ZrO₂上以含氧酸盐热反应法制得的YBa₁Cu₁O_{1,5+δ}超导膜的表面状态、组成及各成分元素的结合能, 特别是Ar⁻⁻ 刻蚀前后蓝表面组成和状态的变化,并与另一条件下制得的 Y₂BaCuO₅ 非超导膜 作了比较, 探讨了 Ar⁻⁻ 刻蚀前后, 超导膜表面状态和组成变化的原因。确定了 YBa₂Cu₂O₂, \cdot_{2+b} 超导膜中各成分元素的结合能: Y₂**4**₅, \cdot_{2} = 156.3eV; Ba₂**4**₅/2 = 778.5eV; Cu₁**P**/2 = 933.5eV和 O₁s = 528.3eV, 529.4eV。结果还表明: 超导膜 表面容易受H₁O和CO₂的侵蚀, 生成BaCO₂。

关键词: 高Tc超导膜 XPS表面分析

引 言

关于 Y Ba₂Cu₅O_{e,5+e} 高 Tc 超导材料的组成和结构已经有过研究 报 道^(1-o)。以 Y₂O₃、BaCO₃和CuO 为原料制得的 Y Ba₂Cu₃O_{6,5+b} 超导材料的 XPS研究也有一些文 献报道^(*-8),但对YBa₂Cu₃O_{6,5+b} 超导膜的 XPS研究还未见报道。本文是用含氧酸盐为 原料制得的 YBa₂Cu₃O_{6,5+b} 超导膜的 XPS研究,与不同条件下制得的 Y₂BaCuO₅ 非超导膜作了比较。研究结果对了解超导膜的表面状态、组成以及表面稳定性具有重要意义。

实 验

一、样品的制备

以 5 × 10 × 1 mm 的 Z_rO_2 片为基体,用含氧酸盐热反应法在不同条件下制得 厚 约

本文于1988年4月21日收到。

本文曾在宝鸡举行的全国高温超导学术会议(1988年4月)上报告。

10μm的Y-Ba-Cu-O系超导膜(样品编号 SD-8)和非超导膜(样品编号SD-9)。样品 测定前用A.R.级丙酮清洗吹干后置于干燥器中。

二、膜中各成分元素分析和物相结构测定

元素分析用日本 Hitachi 650 扫描电子显微分析仪, 以无标样法作成分元素定量分析。 物相结构测定用日本 Rigaku D/Max-RA 转靶X射线衍射仪, CuK。靶, 40kV 150mA。

三、X射线光电子能谱(XPS)测定

使用英国ESCALABMK I型电子能谱仪对样品进行测试。XPS测定中用A1K。为 X光源,激发源功率300W,分析器能量20eV,以沾污C₁,284.9eV为结合能定标。测量 时真空室压强~10⁻⁹Torr,使用PDP11/23电子计算机对所获得的信息进行本底扣除, 平滑、解叠及组分元素相对原子浓度定量分析工作,表面刻蚀用Ar⁺ 枪溅射,离子束电 压5kV,电流30μA。

结果和讨论

1. SD--8 样品经扫描电镜能谱仪分析和X衍射物相测定结果,确定主要是组成为 YBa₂Cu₃O_{6.5+b} 的黑色正交晶系的超导相,经电阻-温度系数测定;转变温度T₆= 83.4K,零电阻温度T₆=78K。SD-9样品主要是组成为Y₂BaCuO₅的绿色正交晶系的 非超导相。

2. SD-8和SD-9二种样品,Ar*刻浊前后进行了XPS表面元素全分析,比较结果 表明二种样品均出现相同的元素峰,包括 Y、Ba、Cu、O以及C。未出现其他元素 峰,只是峰的相对强度不同。SD-8样品的Cu₂p,Ba₃u和O₁,峰,Ar*刻蚀前均较 SD-9 样品的强,而SD-9的Y₃u峰较SD-8的强。SD-8样品在Ar*刻蚀前后,各元素峰相对强 度的变化为Cu₂p和Y₃u峰增强,O₁,峰减小(图1,图2)。

3. Ar⁺ 刻蚀前后, SD-8和SD-9 样品膜表面成分元素的结合能测定结果见表 1⁻和表 2。O₁, 宽峰的解叠结果见表 3 和表 4。表面成分元素含量(原子%)的分析结果见表 5 和表 6。

表1 SD-8试样(超导膜)Ar*刻蚀前后各成分元素结合能的实测值

Table	1	Binding	Energy	of	Constitu	uent	Elemen	ıts in	SD-	8 Sample
(Su	per	conductin	g Film)	M	leasured	befo	re and	after	Ar ⁺	Sputtering

	element line		after Ar ⁺ sputtering(5kV, 30µA)		
elemer			after 6min	after 21 min	
			binding energy (eV)	binding energy (eV)	
310.15/0	primary		156.9	156.9	
¥ 3a 5/2	secondary			-	
No Jo /o	primary	157.9	158.7	158.7	
¥ 3a 3/2	secondary	:		· · · · · · · · · · · · · · · · · · ·	
	primary	780.2	779.8	779.9	
Ba305/2	secondary	778.5			
	primary	795.5	795.2	795.3	
Ba 34 3/2	secondary	793.8		·)	
	primary	933.5	932.8	932.8	
Cu2p3/2	secondary			i	
C . 0 - 1 / 0	primary	953.5	952.9	952.9	
$\operatorname{Cu}_2 p_{1/2}$	secondary			·	
0	primary	531.5(w)	529.7(w)	529.5(W)	
0,5	secondary	529.2(s)	531.1(s)	531.1(s)	
<u> </u>	primary	285.0	285.1	285.0	
U 1 8	secondary	289.1	·		

note: w = width s = shoulder

.

表 2 SD-9试样(非超导膜)Ar*刻蚀前后各成分元素结合能的实测值

Table 2 Binding Energy of Constituent Elements in SD-9 Sample (Non-Superconducting Film) Measured before and after Ar⁺ Sputtering

		before Ar ⁺ sputtering	after Ar ⁺ sputtering (5kV, 30µÅ)
element	line	binding	after 6min
			binding energy(eV)
Vadala	primary	156.2	157.4
1 34 37 2	secondary		
Nodo, o	primary	158.4	159.3
1 34 3/2	secondary		
	primary	779.4	780.2
Ba 30 5 2	secondary		
	primary	794.9	795.4
Basa 5,2	secondary		
	primary	933.5	933.0
Cu2 <i>p</i> 3/2	secondary		
	primary	953.5	953.0
	secondary		
0	primary	531.5(w)	530.3(w)
U ₁ s	secondary	529.4	531.4(s)
	primary	285.0	284.9
C ; s	secondary	289.2(s)	1

note: w = width s = shoulder

4

本3こAr 刻理(5kV, 50µA)前后5D-8頃件01,時的時量結果 Table 3 Results of Deconvolution of O ₁₈ Peak in SD-8 Sample before and after_Ar [*] Sputtering							
before Ar sputtering after Ar sputtering for 6 min							
binding energy (eV)	atom%	binding energy (eV)	atom%				
528.3	12.66	529.5	68.87				
529.4	20.65	531.4	23.05				
531.5	51.75	532.6	8.08				
532.9	14.94						

表 3 ₹Ar*刻烛(5kV, 30µA)前后SD-8试样O₁。峰的解叠结果

表 4 Ar^{*}刻蚀(5kV, 30μA)前后SD-9试样O.s峰的解叠结果

Table 4 Results of Deconvolution of O₁s Peak in SD-9 Sample before and after Ar⁺ Sputtering

before[Ar ⁺]	sputtering	after Ar ⁺ sputtering for 6 min		
binding energy (eV)	atom%	binding energy (eV)	atom%	
528.4	9.24	529.9	34.83	
529.3	19.81	531.3	48.99	
531.4	45.81	532.2	16.18	
533.4	25.14			

表 5 Ar⁻刻蚀(JkV, 30µA)前后SD-8 试样表面各成分元素含量分析结果

Table	5	Results of Composition Analysis of Surface Constitu	ent
		Elements in SD-8 Sample Measured before and after	Ar ⁻
		Sputtering (5kV, 30µA)	٠.

symbol of before Ar sputtering		after Ar for	sputtering 6 min	after Ar ⁺ sputtering for 21 min		
element	atom%	ratio of composition	atom%	ratio f com lition	atom%	ratio of composition
Y	4.80	1.00 ,	13.89	1.00	14.29 ,	1.00
Ba	11.65	2.43	10.03	2	10.34	0.72
Cu	12.91	2.69	19.18	1.38	19.62	1.37
0	70.61	14.73	56.89	4.09	55.75	3.90

5

)-9;试样实面各成分元素含量分析结果
Γ

Table	6	Results of Composition Analysis of Surface Constituent
		Elements in SD-9 Sample Measured before and after Ar-
		Sputtering (5kV, 30µA)

	before Ar	* sputtering	after Ar ⁺ sputtering for 6 min		
symbol of element	atom% ratio of composition		atom%	ratio of composition	
Y	9.08	1.00	12.98	1.00	
Ba	8.24	0.91	9.76	0.75	
Cu	7.23	0.80	10.94	0.84	
О .	75.46	8.31	66.32	5.11	

上述结果表明 YBa₂Cu₃O_{6.5+b} 超导膜表 面 Cu₂P_{3/2} 的 结 合 能, Ar⁺ 刻 蚀 前 为 933.5eV。根据结合**能数值和卫星峰**的特征证明为Cu²⁺状态(图 3)^(P,10)。经Ar⁺刻 蚀(5kV, 30µA) 6 分钟后,特征卫星峰消失, 出现结合能为932.8eV的峰,由于Cu₂O 中 Cu₂P_{3/2} = 932.4eV, 而实测值 932.8eV 要比它高,估计是由于 Ar⁺ 刻蚀Cu²⁺状态 还原生成以某种复合氧化物形式存在的 Cu⁺ 状态,由于 Cu²⁺ 还原成 Cu⁺ 状态,从而

导致膜表面结构的破坏。 $Ba_{3d_5/2}$ 在Ar⁺刻蚀前出现两个峰,结合能分别为778.5eV和780.2eV,见表1和图5。经Ar⁺刻蚀6分钟后, $Ba_{3d_5/2}$ 的结合能为779.8eV。 $Y_{3d_5/2}$ 在Ar⁺刻蚀前为156.3eV(表1和图6),与文献⁽⁶⁾报道的YBa₂Cu₃O_{6.5+b}超导样品测定结果($Y_{3d_5/2}$ =156.3eV)相同。经Ar⁺刻蚀(5kV, 30 μ A)6分钟后 $Y_{3d_5/2}$ 的结合能为156.9eV,较Ar⁺刻蚀前增高。O₁,在Ar⁺刻蚀前为宽峰,经解叠后为4种状态,结合能分别为528.3eV,529.4eV,531.5eV和532.9eV。而经Ar⁻刻蚀(5kV, 30 μ A)6分

钟后, O1、经解叠为3种状态,结合能分别为529.5eV、531.4eV和532.6eV(见表3. 图 7 和图 8)。Ar⁺ 刻蚀前后表面各成分元素的原子百分数含量分析结果见表 5 。结果 表明,经Ar⁺ 刻蚀 6 分钟后, 超导膜表面O含量降低很大, Ba 含量略降低, Cu 含量升 高、Y含量很大增高、议说明Ar*刻钟前、O在表面浓度较高、Ba也略高。 上述结果说 明Ar*刻蚀前后膜表面状态和组成有很大变化。 这估计是由于膜表面各成分元素不同的 刻蚀速度、Ar*刻蚀诱发的还原和表面结构的破坏等几种因素造成的。 综合以上结果。 可以认为在Ar*刻蚀后超导膜表面晶格结构的破坏是由于下述还原分解反应的缘故。

峰的拟合

Fig. 7 SD-8 sample, before Ar⁺ sputtering, the curve fitting of O₁s peak

11.0

merev(eV)

Infanting a

152.5

142 5

0_{1.}

527.0

Fig. 8 SD-8 sample, after Ar⁺ sputtering 6min (30µA, 5kV)the curve fitting of O₁s peak

$$YBa_{2}Cu_{3}O_{6.5+\delta} \xrightarrow{Ar^{+}} \exists ta + YBa_{2}Cu_{3}O_{5} + \left(\frac{1.5+\delta}{2}\right)O_{2}$$
 ↑

g: YBa₂Cu₅O_{6.5+b} $\xrightarrow{Ar^{+}3/2}$ Y₂O₃ · 2 BaO · $\frac{3}{2}$ Cu₂O + $\left(\frac{1.5+\delta}{2}\right)$ O₂ ↑

7

另外, Ar^* 刻蚀前, $YBa_2Cu_3O_{\mathfrak{s},\mathfrak{s}+\mathfrak{b}}$ 超导膜表面由于与空气中少量 H_2OnCO_2 的作用, 生成部分 $BaCO_3 \cdot XH_2O(\sigma Ba_2(OH)_2CO_3)$ 复盖表面, 从而导致表面O和Ba的富集(O的富集还有一部分是由于吸附O₂的存在)。这可用下面反应式表示:

 $YBa_{2}Cu_{3}O_{\delta.5+\delta} + 2XH_{2}O + 2CO_{2} \longrightarrow 2BaCO_{5} \cdot XH_{2}O$ $+ \frac{1}{2}Y_{2}Cu_{2}O_{5} + 2CuO + \frac{1}{2}\delta O_{2} \uparrow$

Ar⁺ 刻蚀前, Ba₃u₅, 2 = 780.2eV的峰为 BaCO₃ • xH₂O中Ba²⁺ 的结合能^(6,10), O₁ = 531.5eV 的峰为这一化合物中CO₃²⁻(或OH⁻)中O的结合能, C₁ = 289.1eV的 峰也是CO₃²⁻存在的证据^(6,10)。Y₃d₅/2 = 156.3eV, Ba₃d₅/2 = 778.5eV, Cu₂p₃/2 = 933.5eV和O₁ = 528.3eV, 529.4eV分别归属于YBa₂Cu₃O_{8.5+b}, Y₂Cu₂O₅和CuO中 的Y³⁺、Ba²⁺、Cu²⁺和O²⁻的结合能, O₁ = 532.9eV 为表面吸附O₂(或H₂O)的结合 能。可以看出超导相中 Ba₃d₅/2 = 778.5eV较BaO(Ba₃d₅/2 = 779.7eV)的结合能明显降 低, O₁ = 528.3eV较CuO⁽¹⁰⁾中O²⁻的结合能也显著降低, 这是YBa₂Cu₃O_{8.5+b}超导 氧化物的特征, 应与超导性质有密切关系, 尚待进一步深入探讨。

Ar⁺ 刻蚀 6 分 钟 后, 表面 Y_{3d5/2} = 156.9eV, Ba_{3d5/2} = 779.8eV, Cu_{2P3/2} = 932.8eV 分别归属为超导膜表面经 Ar⁺ 刻蚀诱发的还原及分解反应生成 的 $1/2Y_2O_3 \cdot 2BaO \cdot 3/2Cu_2O(gYBa_2Cu_3O_5)$ 物相中的Y³⁺, Ba²⁺和Cu⁺的结合能。O₁₅ = 529.5eV 为和Y³⁺, Ba²⁺相联结的O²⁻的结合能,O₁₅ = 531.4eV 为和 Cu⁺ 相联结的O²⁻的结合 能, O₁₅ = 532.6eV 是由于反应析出O₂吸附于表面造成的。

膜表面各成分元素的含量(原子%)是根据各元素线的峰面积和灵敏度因子由专用 计算机计算的结果,见表 5 和表 6 。Ar⁺ 刻蚀 6 分钟后,膜表面组成元素相对原子百分 含量的变化很大,特别是Y量增加很大,O量很大降低。Ar⁺ 刻蚀21分钟后与刻蚀 6 分钟 后的比较,则相对变化较小。这估计不仅仅是各种成分刻蚀速率不同引起,而是由于刻 蚀前表面与空气中的H₂O, CO₂和O₂等作用,生成 BaCO₃·xH₂O和吸附O₂等复盖表 面,使刻蚀前后表面组成差别较大的缘故。

从SD-9 样品的测定结果与相应SD-8 样品的结果比较,主要差别在于表面各成分元 素含量(原子%)不同。SD-9非超导膜的Y含量要高很多,Ba和Cu含量均小于SD-8样品。说明两种样品表面元素组成很不相同。另外,SD-9样品表面未出现结合能 $Ba_{3}u_{5/2}$ = 778.5eV的峰,而经Ar⁺刻蚀后,SD-9 出现Y₃ $a_{5/2}$ (=157.4eV)结合能更高的峰,这与SD-8 不同。

综上所述,可以认为超导膜与非超导膜的表面组成和结构有明显差别。 YBa₂Cu₃· O_{0.5+b} 超导膜中各成分元素的结合能分别为:

$$Y_{3d5/2} = 156.3 eV$$

 $Ba_{3d5/2} = 778.5 eV$
 $Cu_{2P3/2} = 933.5 eV$
 $O_{1s} = 528.3 eV, 529.4 eV_{o}$

9

. . . .

文献^[11]根据化学计量法,认为有 Cu³⁺ 状态存在于超导相,但从我们的X PS研究中,未发现能相应于Cu³⁺状态的化学位移。在Ar⁺刻蚀条件下Cu²⁺状态易被还原成Cu⁺ 状态并导致膜表面结构的破坏。经Ar⁺刻蚀21分钟后测定过的SD-8样品的电阻率较Ar⁺ 刻蚀前增大。另外,超导膜表面容易与空气中的H₂O, CO₂等作用而影响其性能。

参考文献

[1] Bednorz, J.G., Muller, K.A., Z. Phys., B64, 189 (1986).

- [2] Zhao, Zhongxian, Chen Liquan, et al., Kexue Tongbao, 82, 522 (1987).
- [3] Beyers, R., Lim, G., Engler, E.M., Savoy, R.J., Appl. Phys. Lett.
 50 (26), 1918 (1987).
- [4] Siegrist, T., et al. Phys. Rev. B: Condens. Matter, 35(13),7137(1987).
- [5] Zhang, B.S., et al., Inter. J. Modern Physics, B, 1 (2), 125 (1987).
- (6) Tang, Youqi, et al., Application of XPS to studying Y-Ba-Cu-O superconductor, Preprint (1987).
- [7] Dauth, B., et al., Z. Phys., 68 407 (1987).
- (8] Steiner, P., Appl. Phys., A44, 75 (1987).
- [9] Briggs, D., et al., Practical Surface Analysis, John Willey Sons. Ltd.(1983).
- [10] Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Company (1985).
- [11] Harris, D.C., Hewston, T.A., J.Solid State Chem., 69 (1), 182 (19 87).

XPS STUDY OF Y-Ba-Cu-O SUPERCONDUCTING FILM PREPARED BY OXO-ACID SALTS THERMO-REACTION METHOD

Zhuang Ruifang Qiu Jiabin

(Coordination Chemistry Institute, Nanjing University)

Cai Shide

(Modern Analysis Center, Nanjing University)

X-Ray Photoelectron Spectroscopy (XPS) has been used to study the YBa₂Cu₃O_{6.5+b} superconducting film on the ZrO₂ substrate prepared by oxo-acid salts thermo-reaction method. The results were compared with those obtained from the sample of Y₂BaCuO_b non-superconducting film prepared in different conditions. It shows that there are differences between the two samples. The factors inducing the changes of surface states before and after Ar⁺ sputtering are discussed. The binding energy of constitution elements of YBa₂Cu₃O_{6.5+b} are as follows: Y₃d_{5/2} = 156.3 eV, Ba₃d_{5/2} = 778.5eV, Cu₂p_{3/2} = 933.5eV and O_{1s} = 528.3eV, 529.4eV. After Ar⁺ sputtering, the Cu²⁺ state on surface was reduced to Cu⁺ and surface lattice damaged. It also shows that the surface of superconducting film is easy to be attacked by trace of H₂O and CO₂ forming BaCO₂ on the surface.

Keywords high-Tc superconducting film XPS surface analysis