ESR 研究FeAPO _ 、和FeSAPO _ 、分子筛

鲍书林 章方良 须沁华 (南京大学化学系,南京)

关键词:磷酸铝分子筛 电子自旋共振

AIPO_{4-n}和SAPO_{-n}系列分子筛是 80 年代由美国联合碳化物公司(U.C.C.)首先合成的一类磷铝分子筛^[1-4]。杂原子 Fe 的引入可调变其性能,使其出现独特的吸附及催化性能。Castner^[5]等用量子力学方法分析了玻璃中 Fe³⁺的顺磁信号,g=4.30的物理意义。Mcnicol^[6],Pott等研究了Fe³⁺取代的 NaY 和NH, Y骨架中 Al 的 ESR 谱。

我们用 ESR 方法研究了本实验室合成出的FeAPO_5和FeSAPO_5分子筛。结果表明, 三价 Fe 取代了AIPO_5和SAPO_5骨架中的 AI 或 P 而进入分子筛的骨架。

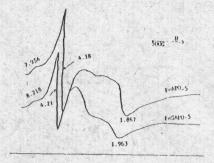
以 $Fe_2O_3 \cdot xH_2O$ 作为 Fe 源, Et_3N 为模板剂, H_3PO_4 、活性 Al_2O_3 和硅溶胶等作为原料,于 200℃下晶化,使之晶化完全,所得样品的化学组成及晶胞组成列于表 1.

表 1 FeAPO_,和FeSAPO_,的组成

Table 1 Composition of FeAPO_, and FeSAPO_,

sample	chemical composition (mol)					
	SiO ₂	P ₂ O ₅	Al ₂ O ₃	Fe ₂ O ₃	composition of cell	
FcAPO-5	-	0.92	1.00	0.023	Fe _{0.28} Al _{13.5} P _{11.5} O ₄₈	
FeSAPO-5	0.396	0.91	1.00	0.032	Fe _{0.36} Al _{11.3} P _{10.3} Si _{2.2} O ₄₈	

XRD 诸鉴定表明,以 $Fe_2O_3 \cdot xH_2O$ 作为 Fe 源较佳。当 Fe_2O_3 / $Al_2O_3 > 0.20$ 时,观察 到有杂晶峰出现,反应混合物中含 Fe_2O_3 量愈高,样品的结晶度愈差。

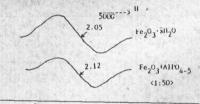

在合成过程中, H_2O/AI_2O_3 在较大的范围内变化〈30~150〉,其对样品质量影响不大。

反应混合物的 pH 值一般控制在 5~6 之间较为合宜。

在 200°C 下晶化 5 小时左右即晶化完全,若将晶化时间延长至 40 小时,亦未发现有任何杂晶或转晶现象,而晶化 24 小时较为合适。

将样品磨细后封入统一规格的石英毛细管内,在西德 BrucKer 公司 ER200D-SRC 电子 顺磁共振波谱仪上测定了FeAPO_s和FeSAPO_s样品的谱图。如图 1 所示:

图 1 室温下FeAPO_5和FeSAPO_5的 ESR 谱 Fig.1 ESR spectra of FeAPO_5 and FeSAPO_5 at room temperature


从上图可见,FeAPO $_{-5}$ 有三个谱峰,其 g 值分别为 7.954,4.18 和 1.876。FeSAPO $_{-5}$ 亦 有三个谱峰,其 g 值分别为 8.218、4.211 和 1.963。在相同条件下我们测定了AlPO $_{4-5}$ 和 SAPO $_{-5}$ 的 ESR 谱,均未发现 ESR 信号产生。Fe²⁺ 在室温下亦不能观察到 ESR信号^[5]。可见,FeAPO $_{-5}$ 和FeSAPO $_{-5}$ 上的 ESR 信号是由于Fe³⁺ 所产生的。

我们测得FeAPO_5和FeSAPO_5的 ESR 谱,其 g 值分别为 4.20 和 4.21,可归属为四面体中的 Fe,而 Fe 的环境分别为FeAl₂P₂、FeSi₂P₂和FeAlSiP₂。

为了探讨 ESR 谱图上 g=1.867 〈FeAPO_₅〉和 g=1.963 〈FeSAPO_₅〉的谱峰归属,我们测定了无定形Fe₂O₃ \cdot xH₂O和AlPO₄₋₅ 上负载了Fe₂O₃ \cdot xH₂O 〈AlPo₄₋₅ / Fe₂O₃ \cdot xH₂O 包 ESR 谱。从图 2 可见,Fe₂O₃ \cdot xH₂O的 ESR 谱与FeSAPO₋₅和 FeSAPO₋₅中的 g=1.90 左右谱峰一致,而且峰形较宽,因此,可以认为 g=1.90 左右的谱峰是由于FeAPO₋₅和FeSAPO₋₅样品上无定形Fe₂O₃ \cdot H₂O所产生。

图 2 Fe₂O₃·xH₂O和AlPO₄₋₅负载 Fe₂O₃样品的 ESR 谱

Fig.2 ESR spectra of Fe₂O₃ • xH₂O and AlPO₄₋₅ loading Fe₂O₃ samples

Mcnicol等^[6] 曾报道了在水合的 NaY 和NH₄Y中 Fe 的 ESR 谱,观察到 g=8.50 的谱峰,其归属于扭曲的八面体中的 Fe 所产生的。我们所测FeAPO_₅和FeSAPO_₅的 ESR 谱中,g=8.00 附近有一微弱的谱峰,我们将它归属于分子筛中与氧结合而形成扭曲八面体 Fe。

将 $FeAPO_{_5}$ 样品经 600 C 、 12 小时焙烧, g=4.20 谱峰明显变小,而 g=1.92 谱峰增大,表明,Fe 会从分子筛骨架上脱离而形成无定形的 Fe_2O_3 (图 3).

图 3 焙烧后的FeAPO_sESR 谱 Fig.3 ESR spectra of calcined FeAPO_s

综上所述我们认为: Fe 在FeAPO_,和FeSAPO_,上可能以三种形式存在: (i)分子筛骨架上的 Fe; (ii)无定形的Fe,O,; (iii)分子筛上扭曲八面体配位的 Fe.

我们所合成的FeAPO₋₅和FeSAPO₋₅样品, 经 ESR 谱测定 g=4.20 左右有一强而尖锐谱峰。证实 Fe 确已进入分子筛骨架,但是,在 g=2.00 左右仍有一弱而宽的谱峰出现,这表明仍有极少量的无定形Fe₂O₂存在于分子筛中。

参考文献"

- [1] Wilson, S.T. et al., U.S.Pat., 4,310,440(1982).
- [2] Wilson, S.T. et al., "Intrazeolite Chemistry" A.C.S. Symp. Ser., 218, P.79. (1983).
- [3] Lok, B.M. et al., U.S. Pat., 4,440,871, (1984).
- [4] Lok, B.M. et al., J.A.C.S., 106,6092(1984).
- [5] Castner, T. et al., J. Chem. phys., 32,668.(1960).
- [6] Mcnicol, B.M. et al., J. Catal., 25,223(1972).

STUDY OF THE ESR ON FeAPO-5 AND FeSAPO-5 MOLECULAR SIEVES

Bao Shulin Zhang Fangliang Xu Qinhua
(Department of Chemistry, Nanjing University, Nanjing)

FeAPO_{_5} and FeSAPO_{_5} were sythesized by hydrothermal method. The above samples have been studied by means of ESR and confirmed that Fe³⁺ is inserted the framework. The relationship between the g_{obs} value and the surroundings of Fe³⁺ in the FeAPO_{_5} and FeSAPO_{_5} are discussed. It is also proposed that there are a number of possible forms for Fe³⁺ in the FeAPO_{_5} and FeSAPO_{_5},(1) a strong sharp ESR signal at g=4.20, as tetrahedral coordination Fe³⁺ in the framework of FeAPO_{_5} and FeSAPO_{_5};(2) a very weak broad ESR signal at $g\approx 2.00$, as amorphous Fe₂O₃;(3) a very weak ESR signal at $g\approx 8.00$, as distorted octahadral Fe³⁺ species.

Keywords: aluminophosphate molecular sieve ESR