铜(Ⅱ)与 2--[(邻羟苄叉)胺基]酚和 吡啶混配型配合物的合成、性质和结构

刘德信 崔学桂 李凤玲

(山东大学应用化学系,济南 250100)

本文合成了铜(II)号 2--[(邻羟苄叉)胺基]酚和吡啶混配型配合物。通过四圆衍射仪测定了配合物的结构。晶体属正交晶系,空间群为 Pma2₁。晶胞参数: a=9.808(1)Å, b=11.430(3)Å, c=13.436(2)Å, V=1506.2Å³, Z=4, D_c=1.56g/cm³, 用 DTA 和 TG 技术对配合物的热分解过程进行了研究。

关键词: 铜 配合物 合成 性质 结构

前 言

由于某些希夫碱⁽¹⁾与过渡金属所形成的配合物^(2,3)在生命化学中的重要作用,人们对这 类化合物的研究颇为重视⁽⁴⁾.以希夫碱 2~[(邻羟苄叉)胺基]酚为配体的铜(II)配合物曾有 报导⁽⁵⁾,但铜(II)与 2~[(邻羟苄叉)胺基]酚和吡啶所形成的混配型配合物尚未见报导.

本文合成了锅(II)与 2-[(邻羟苄叉)胺基]酚和吡啶混配型配合物的单晶.通过 X 射线单晶 衍射,红外、差热和热重的测定,确定了配合物的晶体结构和分子构型,并对其热分解过程 进行了初步探讨.

实验部分

一.配体 2-[(邻羟苄叉)胺基]酚的合成:

参照文献[6]方法合成. 得到的产物的红外光谱图与标准红外谱图一致. 其化学式为 C₁₃H₁₁NO₂. 元素的百分含量为: 实验值 (%): C 73.23, H 5.07, N 6.27; 计算值 (%): C 73.23, H 5.16, N 6.57.

二. 铜(Ⅱ)与 2-[(邻羟苄叉)胺基]酚配合物的合成:

参照文献[5]的方法合成,得到绿色的粉末状固体,其化学式为(C₁₃H₉NO₂)Cu(II);元素的百分含量为:实验值(%):C 56.30,H 3.23,N 5.23,Cu 22.84;计算值(%):C 56.77,H 3.28,N 5.10,Cu 22.13.

三.铜(Ⅱ)与 2-[(邻羟苄叉)胺基]配和吡啶混配型配合物的合成:

将铜(Ⅱ)与 2-[(邻羟苄叉)胺基]酚的固体粉末配合物溶于吡啶中,用蒸发的方法得到完美的紫色单晶,化学式为 C₁₈H₁₄N₂O₂Cu,其中元素的百分含量为:实验值(%):C 60.70,H
4.14, N 7.26, Cu 18.07; 计算值(%):C 61.11, H 3.96, N 7.91, Cu 17.97.

四.X 射线衍射实验:

选用大小约为 $0.2 \times 0.2 \times 0.2 \mod$ 的单晶,装在 Enraf-Nonius CAD4 四园衍射仪上,利用 石墨单色化的 MoK_a辐射线($\lambda = 0.71073$ Å),采用 $\varepsilon / 2\theta$ 扫描收集强度数据,以 1-7°/min (ε)的变速进行扫描,在 2° $\leq \theta \leq 25$ °范围共收集 1542 个衍射数据,所有强度数据经过 PL

本文于1988年3月7日收到.

因子校正和经验吸收校正,在1376个独立衍射数据中取828个可观察数据[/≥3σ(1)]进行结构 分析.

晶体的空间群为 Pna2,, 属正交晶系, 晶胞参数为: a=9.808(1)Å, b=11.430(3)Å, c = 13.436(2)Å, V = 1506.2Å³, Z = 4, $D_c = 1.56$ g/cm³.

五.结构测定和修正:

由重原子法得到铜原子的坐标,经数轮差值 Fourier 合成得到全部非氢原子坐标,对所有 非氢原子坐标和各向异性热振动参数进行全矩阵最小二乘法修正,得到最终结构偏离因子 $R = 0.056, R_w = 0.057.$

配合物中原子坐标和热参数、键长和键角分别列于表 1-3.

表1 非氢原子坐标及热参数

1	Table 1 Atomic Coordinates and Thermal Parameters of Non-Hydrogen Atoms						-			
	atom	x	y y	z	$B_{eq}(A^2)$	atom	x	; ;	Z	Beg (A2)
,	Cu	0.4556(2)	0.4203(1)	0.250	4.88(3)	C ₂₄	0.664(2)	0.052(1)	0.076(1)	5.2(4)
	011	0.315(1)	0.4481(9)	0.344(1)	6.6(3)	C25	0.563(2)	0.075(1)	0.142(1)	4.9(4)
	O ₂₁	0.584(1)	0.3908(9)	0.1508(9)	7.1(3)	C ₂₆	0.531(2)	0.188(1)	0.168(1)	4.7(4)
	N ₃₁	0.524(1)	0.5877(8)	0.263(1)	4.1(2)	C ₃₂	0.475(2)	0.675(1)	0.337(1)	5.2(4)
:	C ₁₁	0.244(2)	0.363(1)	0.387(1)	4.8(4)	C ₃₃	0.525(2)	0.773(1)	0.347(1)	5.5(4)
	C12	0.143(2)	0.387(1)	0.459(1)	5.1(4)	C34	0.628(2)	0.810(1)	0.287(1)	5. 9(4)
	C ₁₃	0.067(2)	0.297(1)	0.499(1)	4.9(4)	C35	0.678(2)	0.740(1)	0.213(1)	5.4(4)
	C14	0.091(1)	0.182(2)	0.473(1)	4.0(3)	C36	0.622(2)	0.625(1)	0.203(1)	5.4(4)
	C15	0.191(2)	0.158(1)	0.403(1)	4.6(4)	N	0.372(2)	0.260(2)	0.286(2)	3.9(5)
	C ₁₆	0.266(1)	0.247(1)	0.357(1)	3.7(3)	С	0.420(3)	0.164(2)	0.249(4)	6.2(6)
	C ₂₁	0.609(2)	0.282(1)	0.126(1)	5.1(4)	N'	0.448(2)	0.249(1)	0.236(2)	2,7(4)
	C22	0.712(2)	0.259(1)	0.057(1)	5.0(4)	C′	0.369(2)	0.192(1)	0.280(2)	1.9(4)
	C ₂₃	0.742(2)	0.141(2)	0.034(1)	4.5(4)				_	

表2 鐘长数据(Å)

Table 2 Bond Lengths						
bond length	Å	bond length	Å	bond length	Å	
Cu-O ₁₁	1.898(10)	C ₁₁ -C ₁₆	1.39(2)	C ₂₃ -C ₂₄	1.39(2)	
Cu-O ₂₁	1.864(10)	C ₁₂ -C ₁₃	1.39(2)	C ₂₄ -C ₂₅	1.36(2)	
Cu-N ₃	2.035(7)	C ₁₃ -C ₁₄	1.385(15)	C ₂₅ -C ₂₆	1.37(2)	
Cu-N	2.06(3)	C14-C15	1.38(2)	C ₂₆ C	1.56(4)	
O ₁₁ -C ₁₁	1.328(14)	C15-C16	1.41(2)	C ₃₂ C ₃₃	1.42(2)	
O ₂ C ₂₁	1.313(13)	C ₁₆ -N	1.41(3)	C33-C34	1.36(2)	
N ₃₁ -C ₃₂	1.37(2)	C ₂₁ -C ₂₂	1.40(2)	C34-C35	1.38(2)	
N ₃₁ -C ₃₆	1.32(2)	C ₂₁ C ₂₆	1.43(2)	C35-C36	1.42(2)	
C11-C12	1.41(2)	C22-C23	1.42(2)	N-C	1.29(3)	

Table 3 Bond Angles						
bond angle	(")	bond angle	(*)			
O ₁₁ -Cu-O ₂₁	175.7(5)	Cu-N-C	121(2)			
0 ₁₁ -Cu-N ₃₁	91.5(5)	C ₂₆ -C-N	112(3)			
0 ₁₁ Cu-N	72.6(6)	C ₁₆ -N-C	116(3)			
$O_{21} - Cu - N_{31}$	90.4(5)	C ₁₅ -C ₁₆ -N	139(2)			
021-Cu-N	106.1(6)	O ₂₁ -C ₂₁ -C ₂₂	119(1)			
N ₃₁ -Cu-N	160.9(7)	O ₂₁ -C ₂₁ -C ₂₆	121(1)			
Cu-O ₁₁ -C ₁₁	122.9(9)	$C_{11} - C_{16} - N$	102(2)			
Cu-O ₂₁ -C ₂₁	118(1)	0 ₁₁ -C ₁₁ -C ₁₂	121(1)			
Cu-N ₃₁ -C ₂₂	119.5(9)	O ₁₁ -C ₁₁ -C ₁₆	119(1)			
Cu-N ₃₁ -C ₃₆	120(1)	C ₂₁ ~C ₂₆ ~C	141(2)			
Cu-N-C ₁₆	123(1)	C ₂₅ -C ₂₆ -C	100(2)			

表 3 键角数据(°)

结果及讨论

配合物的分子结构见图 1, 从图中可以看出, 配合物[(C₁₃H₉NO₂)(C₅H₅N)Cu(Ⅱ)]中, 中 心离子铜(Ⅱ) 是四配位, 以 *dsp*² 杂化成键, 近似于平面正方形. 配体 2-[(邻羟苄叉)胺基]酚 上的 O₁₁、N、O₂₁ 三原子与铜(Ⅱ)所形成的 Cu-O₁₁,Cu-N、Cu-O₂₁ 键长分别为 1.898(10) Å, 2.06(3)Å, 1.864(10)Å; 吡啶分子上的 N 原子与铜(Ⅱ)配位所形成的 Cu-N₃₁ 键长为 2.035(7)Å.

配合物分子在晶胞中,以图 2 中的 A 和 B 两种形式存在.对于平面型分子而言, A 和 B 两种形式实际上是没有区别的,但就晶体结构 而言,则可以形成纯 A (或纯 B)或 A、B 混合 型配合物单晶、在差值 Fourier 合成过程中,我 们所测的样品显示了如图 2 中 C 所示的结构. 将 N、C、N'、C'四个原子的占有率做为变量参 加结构的精修,其占有率均接近于 0.5,证明该 晶体是 A、B 近似等量的混合型单晶.

需要指出的是, Maggio,F 等⁵⁵ 从红外光 谱和磁矩的数据推测由 2-[(邻羟苄叉)胺基]酚和 铜(II)所生成粉末状固体配合物是双核配合物

图1 配合物分子结构图

Fig.1 Molecular structure of complex

Cu^{<0}_O<Cu[<],这种推测的不充分性,这里暂不讨论,但就一般双核钢(Ⅱ)配合物来说,其桥基氧原子与铜之间的键长为1.930Å左右,Cu-N之间的距离是2.350Å左右^(7,8), 而本文中的两个 Cu-O 键和两个 Cu-N 键分别为1.898 (10) Å, 1.864 (10) Å, 2.06 (3) Å和 2.035 (7) Å,比文献中的数据短.可以看出,就本文的体系来说,生成单核铜配合物更稳定些.

§3期

配合物的红外光谱是用 KBr 压片法在 NICOLET-5DX 型红外光谱仪上完成的. 谱图表 明原配体 2-[(邻羟苄叉)胺基}酚在 3350cm⁻¹ 处的 OH 伸缩振动消失,说明羟基上的质子失 去.该配体在 1640cm⁻¹ 处的 C=N 伸缩振动配位后红移到 1585cm⁻¹ 处,说明配体上的 N 原 子上的孤对电子参加配位之后,使 C=N 键之间的键力常数变小,吸收频率降低发生红移.

用美国 PE 公司的 TGS-2 型热重分析仪和上海天平仪器厂的 CDR-1 型差动热分析仪进 行了热重和差热的测定,其曲线示于图 3. DTA 曲线表明在 120~160℃有一吸热峰,伴随之 热失重为 21.67%,这是配合物中吡啶分子的失掉(理论值: 22.35%)。粉末状固体配合物没 有这一吸热峰和失重现象,可进一步证实这一结论。出现吸热峰的原因可能是吡啶分子与铜 的 Cu-N 键断开后,没有分解,以分子形式逸出所致。在 340~460℃有一大的放热峰,伴随 之热失重为 56.35%,这是配体 2--[(邻羟苄叉)胺基]酚的分解(理论值 55.16%)。之后再升温, 重量恒定在 21.84%,表明配合物中的铜变成了氧化铜(理论值: 22.49%)。

致谢: 谨向本文提供支持和协助的南开大学姚心侃、王如骥、王宏根同志及山东大学的邹时复、樊悦朋 教授表示感谢.

327

参考文献

- [1] Hodnett, E.M. ct.al., J. Med. Chem., 13, 786(1970).
- [2] Hodnett, E.M. et.al., ibid 15,339(1972).
- [3] 吴自慎等, 无机化学, 2 (1),108(1986).
- [4] Sigeo Kida and Yuzo Nishida, X X V.I.C.C.C., 105(1987).
- [5] Maggio F., Pizzino, T., Romano, V., Inorg. Nucl. Chem. Lett., 10, 1005(1974).
- [6] Westland, A.D., Tarafder, M.T.H., Inorg. Chem., 20, 3992(1982).
- [7] Masahiro Mikuriya, Hisashi Okawa, Sigeo Kida, Bull. Chem. Soc. Jpn., 53, 287(1980).
- [8] Masahiro Mikuriya, Hisashi Okawa, Sigeo Kida, ibid., 53, 1086(1982).

SYNTHESIS, PROPERTIES AND STRUCTURE OF MIXED LIGAND COORDINATION OF COPPER(II) WITH 2-[(o-HYDROXYBENZYLIDENE)AMINO] PHENOL AND PYRIDINE

Liu Dexin Cui Xuegui Li Fengling

(Department of Applied Chemistry, Shandong University, Jinan 250100)

The mixed ligand coordination of Cu(II) with 2-[(σ -hydroxybenzylidene)amino] phenol and pyridine has been synthesized. The structure of the coordination was determined by means of four cycle diffractometer. The crystal is orthorhombic, space group Pna2₁. The parameters of crystal cell are: a=9.808(1)Å, b=11.430(3)Å, c=13.436(2)Å, V=1506.2Å³, Z=4, $D_c=1.56$ g / cm³. The processes of thermal decomposition of the coordination have been investigated by DTA and TG techniques.

Keywords: copper coordination compound synthesis property structure