育3期 90年9月	1		无机化。 IOURNAL OF INORG	学 学 报 ANIC CHEMISTR	Y	Sept. 19	221
		2, 6	一二乙酰吡	啶类双希	夫碱	· .	
			配合物的合	成和研究	:	inter a construction of the second se	
-		П.	Cu(II)配合物	物的合成和很	研究		
60. 60:	戴	寰	韩志坚	耿志明*	蒋玉萍	Cigo - T	
			(南京大学化学系,	南京 210008)			
合成了	五个2,6	一二乙酰	吡啶缩肼基硫代甲酸酯双	(希夫碱合铜(Ⅱ)配合	物,用元家分析、	磁化率、	4

关键词: 2,6—二乙酰吡啶 希夫碱 配合物 铜

前 言

我们在《2,6—二乙酰吡啶类双希夫碱配合物的合成和研究》(I)⁽¹⁾中报道了 2,6—二乙 酰吡啶缩肼基硫代甲酸酯双希夫碱配体(以 $C_{9}H_{3}N[CH=NNHC(S)XR]_{2}$ 表示, X=S、 R=CH₃-为 H₂L'; R=C₆H₅CH₂-为 H₂L²),其与第一过渡系列低价金属离子所形成的开环配 合物,在国内外文献中尚属少见.本文合成并表征了其与 Cu(II)形成的具有三个中心离子 的三核 Cu(II)配合物,初步探讨了它们的结构,这方面的工作在文献中更为少见.

实验部分

-. 配体的合成: 见文献 ⁽¹⁾.DMF的处理及 Et₄N · ClO₄ 的制备按文献 ⁽²⁾ 进行.

二. Cu(SCN), 的合成: 按照文献⁽³⁾ 合成, 得黑色粉末结晶, 保存于真空干燥器中.

E. Cu₃L'₂Cl₂的合成:称取 0.1mmol H₂L'置于 100ml 锥形瓶中,加入 35ml 乙醇,加热搅拌使 成悬浊液,称取 1.5mmolCuCl₂ · 2H₂O 溶于 30ml 乙醇,加至 H₂L'的悬浊液中,回流搅拌 8~
 9小时,冷却、过滤,用 40ml 水和 20ml 乙醇各洗涤一次,得深绿色粉末,红外灯下烘干.

Cu₂L'₂Br₂、Cu₃L²₂Cl₂、Cu₃L²₂Br₂及Cu₃L²₂(SCN)₂均按类似方法合成。

四. 测试: C、H、N 含量, 金属含量, 红外光谱,紫外一可见光谱及磁化率的测定, 所用仪器见文献⁽¹⁾. 循环伏安图用 79-1 型伏安分析仪三电极体系测得, 双液层饱和甘汞电极作参考电极, 铂丝电极作工作电极和对电极, 使用 L23-100 型函数记录仪, 经过处理的 DMF 作溶剂, Bt₄N • ClO₄ 作支持电解质,浓度为 0.1mol • 1⁻¹.

Cu₃L₂²X₂(X=Cl⁻、SCN⁻)的光电子能谱用 ESCA LABII 电子能谱仪测试.

结果与讨论

配合物组成数据见表 1.

本文于1989年2月13日收到.

* 现在江苏省农科院食品饲料研究所工作.

6卷

表1 Cu(Ⅱ)配合物的分析数据

complex	color		% 1	dund		% calcd.			
complex	00101	C	н	N	М	С	Н	N	М
Cu ₃ L' ₂ Cl ₂	dark green	31.61	3.03	14.06	19.61	31.20	3.03	14.00	19.05
Cu ₃ L' ₂ Br ₂	dark brown	28.62	2.57	12.46	18.02	28.67	2.78	12.86	17.50
$Cu_3L_2^2Cl_2$	pale green	46.65	3.33	10.61	14.23	46.01	3.56	10.74	14.61
$Cu_3L_2^2Br_2$	brown	42.56	2.86	9.48	13.08	43.07	3.33	10.05	13.68
$Cu_3L_2^2(SCN)_2$	brown	45.75	3.52	11.88	13.85	46.25	3.44	12.45	14.11

二. 红外光谱: 配体 H₂L 及第一过渡系列其他金属配合物的红外光谱, 我们已在文献⁽¹⁾ 作过 详细讨论. Cu(II)配合物的红外光谱数据列于表 2, 两者极为相似, 这里不再赘述.

表 2 Cu(Ⅱ)配合物的红外光谱数据

Table 2 IR Spectra Data for Copper(II) Complexes

assign	Ĺ		v_C-N	V-C-N	¥-c-N		V-C-N						1	
complex	VC-N	*py	sa)	: S(⊒2)		^v N-N	11 5 (v)	VC-S	v _i	y	^у м-х	^v M-N	^v M∼s	M-N(py)
Cu ₃ L' ₂ Cl ₂	1593w	1575m	1453s	1260w	1044s	964s	808m	752w	635w	422w	339w	362w	315w	269w
Cu ₃ L' ₂ Br ₂	1595w	1580m	1440s	1250w	1035s	963s	810s	745m	628w	428w	313w	387w	329w	262w
$Cu_3L_2^2Cl_2$	1595w	1585m	1460s	1265w	1039s.	958s	806m	77 6 w	654w	424w	345w	364w	316w	273w
$Cu_{2}L_{2}^{2}Br_{2}$	1599w	1582w	1450s	1260w	1035s	945s	815m	770w	625w	440w	315w	370w	320w	273w
Cu ₃ L ₂ ² -	1598w	1580w	1448s	1245w	1060s	958s	810m	775w	625w	427w	322w	393w	340w	282w
(SCN) ₂ **		l		1 1							() {	L

* X: CI⁻, Br⁻, SCN⁻; **SCN⁻: 2170s, 2150s, 2070s.

三. 紫外一可见光谱: 配合物的紫外一可见光谱数据列于表 3.

表 3 Cu(II)配合物的磁化率和紫外可见光谱数据

Table 3 Magnetic Susceptibilities and UV-Visible Spectra Data for Copper(II) Complexes

complex	µ _{e∏} ∕B.M.	λ / nm $(\epsilon / mol^{-1} \cdot cm^{-1})$								
Cu ₃ L' ₂ Cl ₂	1.92	295(6.3 × 10 ⁴)	340(6.3 × 10 ⁴)	$420(sh)(2.5 \times 10^4)$	$525(1.0 \times 10^2)$					
Cu ₃ L' ₂ Br ₂	1.83	265(2.9 × 10 ³)	320(4.6 × 10 ³)	430 (1.2×10^3)						
Cu ₃ L ₂ Cl ₂	2.11	264(2.5 × 10 ⁴)	322(5.4×10 ⁴)	390(sh)(2.5×10 ⁴)	580(sh)(5.5×10 ²)	$755(sh)(2.3 \times 10^2)$				
Cu ₃ L ₂ ² Br ₂	1.78	267(2.4 × 10 ⁴)	322(3.9 × 10 ⁴)	395(sh)(1.6 × 10 ⁴)	580(sh)(6.6 × 10 ²)	$780(sh)(2.4 \times 10^2)$				
Cu ₃ L ₂ (SCN) ₂	1.35	267(2.4 × 10 ⁴)	322(3.2×10 ⁴)	443 (1.3 × 10 ⁴)	795(sh)(2.0×10²)					

*standard sample: $Fe(NH_{a})_2(SO_{a})_2 + 6H_2O_1$, temperature: 25C

* solvent: DMF, concentration $10^{-4} \sim 10^{-5} \text{mol} \cdot 1^{-1}$, "sh"means shoulder

与第一过渡系列其他金属配合物相似, Cu(II)配合物紫外一可见光谱在 264~295nm、 320~340nm 和 390~450nm 区域的吸收都是配体的电子跃迁引起, 分别被标识为 n→ σ^* 、 π → π^* 和 n→ π^* 电子跃迁⁽⁴⁾.在 520~580nm 间的吸收, 根据其强度, 我们认为是 M-L 电荷 迁移吸收.750~780nm 间的弱吸收是中心离子 Cu (II)的 *d*-*d* 跃迁吸收. 四.磁化率: 配合物的磁化率数据列于表 3.

330

331

根据元素分析、红外光谱等测试结果, Cu(Ⅱ)配合物的组成为 Cu₃L₂X₂(L=L'、L²; X=Cl⁻、Br⁻、SCN⁻),应有两种可能的结构. 如右:

结合下一节讨论的电化学性质,我们认为五个 Cu₂(II) 配合物的可能结构为 I. X⁻与 Cu² 轴 向配位,配体中以硫醇形式存在的 S 作为桥联 基团。

Kida.S.⁽⁵⁾ 等研究了苯二醛类双希夫碱双核 Cu(II)配合物的自旋偶合作用,发现该作用随着 赤道平面内配位键的加强而加强,并且认为自 旋偶合作用不是通过 Cu(II)之间的直接作用, 而是通过 dn(Cu)-pn(桥联 O)-dn(Cu)这一"超交 换"途径来实现的.这一点也为我们的实验结果 所证实,不仅如此,我们还认为轴向配体也能

影响自旋偶合作用. Cu(II)与 H₂L² 形成的配合物的 μ_{eff} 按照 Cl⁻>Br⁻>SCN⁻次序下降,表明 Cu(II)的自旋偶合作用是按照上面的次序增加。轴向配体给电子能力的提高,有利于 Cu(II)与桥联硫原子间 dn(Cu)-dn(桥联 S)-dn(Cu)的作用加强,正是这种 dn-dn-dn "超交换"作用 实现了 Cu(II)d 电子的自旋偶合。Cu(II)与桥联硫之间的 dn-dn-dn 作用随着 Cl⁻<Br⁻<SCN⁻增加,这与给电子能力 Cl<Br<S 的次序相一致。

五. Cu(II)配合物的电化学性质研究

以 DMF 作溶剂,在稀溶液中研究了 Cu(II)配合物的循环伏安图.图 1 是 Cu₃L₂²Cl₂ 的 CV 图.在 1.2~-0.4V 的扫描范围内,有两对 Redox 峰,一对在 0.790V, E_p^{ox} — E_p^{red} 值接近于可 逆双电子 Redox 过程理论值 0.030V;另一对在 0.240V, E_p^{ox} — E_p^{red} 值与可逆单电子 Redox 理论 值 0.060V 相近.

T

Nos. S.C.E. 图 1 Cu₃L²₂Cl₂ 的循环伏安图 Fig.1 CV diagram of Cu₃L²₂Cl₂ sweep rate:50mV · s⁻¹ —in DMF containing 0.1 mol · l⁻¹TEAP at 1×10⁻³ mol · l⁻¹ ...after addition of py

言3期

前面已讨论过 Cu(II)配合物的化学式为 Cu₃L₂X₂, X⁻参与配位.在确定配合物的结构时, 我 们首先应该考虑 X⁻究竟怎样与 Cu(II)配位.考虑到溶剂分子可能参与配位,我们观察了不同 溶剂分子对配合物 CV 图的影响.发现当在 Cu₃L₂²Cl₂ 的 DMF 希溶液中加 10 滴吡啶(A.R.) 时,原来在 0.790V 的一对 Redox 峰发生了较大的位移,出现在 0.588V,而另一对 Redox 峰 则基本上没有什么变化.由此我们认为配合物的结构为(I).我们推测在配合物溶解的同 时,DMF 分子就与 Cu¹ 和 Cu³ 配位,当扫描至 0.790V 和 0.240V 前后时,即出现两对 Redox 峰:

 $[Cu_{3}^{(II)}L_{2}^{2}Cl_{2}(DMF)_{n}] \xrightarrow[n=2]{e^{-}, 0.790V} [Cu_{2}^{(II)}Cu_{2}^{(II)}L_{2}^{2}Cl_{2}(DMF)_{n}]^{2-}$ $[Cu_{3}^{(II)}Cu_{2}^{(II)}L_{2}^{2}Cl_{2}(DMF)_{n}]^{2-} \xrightarrow[0.242V]{e^{-}} [Cu_{3}^{(II)}L_{2}^{2}Cl_{2}(DMF)_{n}]^{3-}$

在 0.790V 的 Redox 峰是 Cu¹和 Cu³ 同时发生 Cu^(II) / Cu^(I) Redox 所致,由于 Cu¹和 Cu³化 学环境完全一致,所以它们在 DMF 中的E_{Cu^(II)/Cu^(I)} 也是一致的. 0.242V 的 Redox 峰则是 Cu² 的 Cu^(II) / Cu^(I) Redox.当在溶液中加入吡啶后,吡啶分子取代配位于 Cu¹和 Cu³ 的 DMF 分子,结果 Cu¹和 Cu³ 的电子密度增大了,稳定了 Cu¹和 Cu³ 的+2 氧化态,使 E_{Cu^(II)/Cu^(I)} 降低,电对 Cu^(II) / Cu^(I) 的 Redox 峰发生位移.由于吡啶分子取代 DMF 分子的 反应只在 Cu¹和 Cu³ 上发生,反应前后 Cu² 的化学环境基本没有变化,所以 Cu² 的 Cu^(II)/Cu^(I) Redox 峰几乎没有位移.

考虑到 $Cu_3L_2^2X_2$ 轴向配体 X⁻的不同可能会对 CV 图有所影响,我们也观察了 $Cu_3L_2^2(SCN)_2$ 的 CV₂图(见图 2):在 1.2~-0.2V 的相同的扫描范围内,我们只观察到一对 Redox 峰、 $E_p^{ox} - E_p^{red}$ 值表明为准可逆单电子 Redox 过程.加入吡啶后,这对峰向负方向发生 了较大位移.我们认为由于配合物中 $Cu^{(II)}$ 之间明显的自旋偶合作用,这一 Redox 过程是三个 $Cu^{(II)}$ 共同得到和失去一个电子:

 $[Cu_3^{(II)}L_2^2(SCN)_2(py)_p] \xrightarrow[n=2]{\notin 4} [Cu_3^{(II)}L_2^2(SCN)_2(py)_p]^-$

六. Cu₃L²Cl₂和 Cu₃L²(SCN)₂的 Cu₂p 光电子能谱:

这两个配合物 Cu 2p XPS 中 $2p_{1/2}$ 和 $2p_{3/2}$ 都分裂为两个峰, 与 Cu₃L₂²Cl₂相比, Cu₃L₂²(SCN)₂ 中 $2p_{1/2}$ 和 $2p_{3/2}$ 都降低了 0.3~0.9eV, 且 $2p_{1/2}$ 和 $2p_{3/2}$ 各自的分裂减小. 这 表明配合物中存在两种不同环境的 Cu^(II), 环境的不同导致 $2p_{1/2}$ 和 $2p_{3/2}$ 的结合能也不相同,这与我们前面的讨论中提出的可能结构相符.又由于 Cu₃L₂²(SCN)₂ 中存在明显的 Cu(II) 之间的自旋偶合作用,这种作用中和了 Cu(II)周围的部分正电荷,同时也缩小了两种 Cu (II) 化学环境上的差异,所以 Cu₃L₂²(SCN)₂ 的 Cu(II) $2p_{1/2}$ 和 $2p_{3/2}$ 的结合能变小,且 $2p_{1/2}$ 和 $2p_{3/2}$ 各自的分裂也变小.

2,6一二乙酰吡啶类双希夫碱配合物的合成和研究 II.

参考文献

[1]戴賽、耿志明、韩志坚, 无机化学 5(3),73(1989).
[2]Donathue, J.J.et al., Analytical letters 6, 421(1973).
[3]日本化学会,《无机化合物合成手册》第二册, 520页(1986)
[4]戴安邦《无机化学丛书》第十二卷, 160页(1987).
[5]Kida, S. et al., Bull. Chem. Soc. Japan, 47, 3041(1974).

STUDIES ON COMPLEXES OF SCHIFF BASES DERIVED FROM 2,6-DIACETYLPYDINE II. SYNTHESIS AND STUDIES OF Cu(II) COMPLEXES

Dai Huan Han Zhijian Geng Zhiming Jiang Yuping

(Department of Chemistry, Nanjing University, Nanjing 210008)

The Schiff bases $2,6-C_5H_3N(CH = NNHC(S)XR)_2$ (where X = S, $R = CH_3$, $C_6H_5CH_2$) denived from 2,6-diacetylpyridine and dithiocarbazate have been prepared. Five $Cu(\Pi)$ complexes of the Schiff bases which are $Cu_3L_2^1Cl_2$, $Cu_3L_2^2Br_2$, $Cu_3L_2^2Br_2$ and $Cu_3L_2^2(SCN)_2$ have been isolated. The complexes were characterized by elemental analysis, infrared and visible-ultraviolet spectroscopy and magnetic susceptibility measurements. The electrochemical properties of the complexes and the XPS of $Cu_3L_2^2Cl_2$ and $Cu_3L_2^2(SCN)_2$ were investigated. The results denote that five $Cu(\Pi)$ complexes all are trinuclear compounds and $Cu_3L_2^2(SCN)_2$ present spin-exchange reactions between several $Cu(\Pi)$ states.

Keywords:

影

20-1

期

2,6-diacetylpyridine

Schiff base

complex compound

copper