٠.

| 1991年6月 |       |     |              |        |           |
|---------|-------|-----|--------------|--------|-----------|
| \$      | × * · | ~ ~ | <u>هه م</u>  | • •• • | ~ ~       |
| 5       | Df    | 究   | 简            | 报      | \$        |
| r.      | ~ ~ ~ | ~ ~ | <u>م</u> ، ب | • •• • | •<br>• \$ |

热分解法制备希土氧化物超微粉末

洪广言 李红云

(中国科学院长春应用化学研究所, 长春 130022)

关键词: 超微粉末 希土氧化物 热分解法

# 引 言

超微粉未已被视为九十年代的新材料<sup>(1)</sup>,它的许多奇特的性质和令人惊异的应用不仅引 起人们的重视,并开展了许多研究。但目前对希土金属及其化合物的超微粉未的研究则报道 甚少<sup>(2)</sup>。尽管如此,希土超微粉未已经在磁性材料、超导材料、传感器、超高温耐热合金等 方面获得应用,并取得了明显的效果。

超微粉末的合成方法甚多,但均不成熟、寻求合成希土超微粉末的方法则是一个重要的 识题。我们在研究醇盐法制备氢氧化钕、氧化钕超微粉未的同时<sup>(3)</sup>,采用热分解法制备了一 系列希土氧化物超微粉末,观察了它们粒径变化的规律,得到一些新的结果。

## 实验部分

热分解制备希土超微粉末是一个简单易行的方法,用热分解法制备氧化钇的超微粉末文 献中曾有报道<sup>(4)</sup>.本文用热分解希土柠檬酸或酒石酸配合物,获得一系列希土氧化物超微粉 末。制备工艺如下:称取一定量的希土氧化物(纯度均大于 99.9%),用盐酸(优级纯)溶 解,调节溶液的酸度后加入计算量的柠檬酸或酒石酸(均为分析纯),加热溶解、过滤、蒸 干,取出研细后放入瓷坩锅内,于一定温度下灼烧一段时间,即可得所需的希土氧化物超微 粉末。实验中观察到原料配比、灼烧温度和时间对形成超微粉末有重要影响。

超微粉末的形态在 H-500 型透射电镜上测定。样品的结构分析在日本理学 D / max-ⅡB 型 X 射线衍射仪上进行。

## 结果与讨论

一、配比的影响

在 Y<sub>2</sub>O<sub>3</sub> 与柠檬酸(HA)不同克分子比时,即 Y: HA 分別为 1:1、1:2 或 1:3 的条件下制备 Y<sub>2</sub>O<sub>3</sub> 超微粉末,其粒径均能达到 0.1 微米以下。实验中观察到 Y:HA 为 1:3 时样品最易分散、且粒径较小,测得该样品的比表面为 26 米<sup>2</sup>/克、粒径 < 0.04 微米。电镜照片见

本文于1988年11月17日收到。

\_\_\_\_\_\_ 图 1。

用酒石酸代替柠檬酸,在Y: HA为1:3时制备的Y<sub>2</sub>O<sub>3</sub>超微粉末的结果与柠檬酸相同。



- 图 1 Y<sub>2</sub>O<sub>3</sub> 超微粉末的电镜照片(X25000) Fig.1 TEM photo of UFP for Y<sub>2</sub>O<sub>3</sub>(X25000)
- 二、Ln<sub>2</sub>O<sub>3</sub> 超微粉末的合成与观察

以柠檬酸为配位剂,在 Ln: HA 为 1:3 条件下,用热分解法制备了 La<sub>2</sub>O<sub>3</sub>、Nd<sub>2</sub>O<sub>3</sub>、 Sm<sub>2</sub>O<sub>3</sub>、Dy<sub>2</sub>O<sub>3</sub>和 Yb<sub>2</sub>O<sub>3</sub>的超微粉末。电子显微镜观察结果示于照片 2-4。从电镜照片可见 所合成的 Ln<sub>2</sub>O<sub>3</sub>超微粉末均呈粒状,粒径均小于 0.1 微米。



图 2 La<sub>2</sub>O<sub>3</sub>(a)和 Nd<sub>2</sub>O<sub>3</sub>(b)超微粉末的电镜照片(X 20000)

Fig.2 TEM photo of UFP for  $La_2O_3(a)$  and  $Nd_2O_3(b)$ 



图 3 Sm<sub>2</sub>O<sub>3</sub> 超微粉末的电镜 照片(X25000) Fig.3 TEM photo of UFP for Sm<sub>2</sub>O<sub>3</sub>(X25000)



(X20000)

图 4 Dy<sub>2</sub>O<sub>3</sub>(a)和 Yb<sub>2</sub>O<sub>3</sub>(b)超微粉末 的电镜照片(X20000) Fig.4 TEM photo of UFP for Dy<sub>2</sub>O<sub>3</sub>(a)

and Yb<sub>2</sub>O<sub>3</sub>(b)(X20000)

电子衍射分析表明,它们均为多晶颗粒。对比所制备的各种希土氧化物超微粉末发现,重希 土氧化物的超微粉末的粒径较轻希土氧化物的小。

#### 三、X 射线衍射分析

测定了超微 Y<sub>2</sub>O<sub>3</sub> 粉末的 X 射线衍射图、并与一般 Y<sub>2</sub>O<sub>3</sub> 粉末的衍射图进行比较。观察到 它们的衍射峰位置相同,与 JCPDS(25-1200)卡片相符,均属于立方晶系,空间群 Ia3。但观 察到超微 Y<sub>2</sub>O<sub>3</sub> 粉末的衍射峰较一般 Y<sub>2</sub>O<sub>3</sub> 粉末明显变宽,相对强度减弱。其原因是由于超微 粉末与原子或分子仅差一、二个数量级、颗粒很小,构成微晶的原子数目较少,故晶面有 限,以致不能再近似地看成具有无限多晶面的理想晶体,所以使其衍射峰变宽,强度变弱。

#### 参考文献

(1) 洪广言、李红军、越淑英等, 无机材料学报, (2), 97 (1987).

- (2) 洪广言, 稀土, (5), 57 (1987)。
- (3) 景晓燕、洪广言、李有谟,中国稀土学报,(2) 47 (1989)。
- (4) C. A. 102, 151527c.

### PREPARATION OF RARE-EARTH OXIDES ULTRAFINE POWDER BY THERMOLYSIS

1

Hong Guangyan Li Hongyun

(Changchun Institute of Applied Chemistry, Academia Sinica, Changchun130022)

A series of rare-earth oxides ultrafine powder were prepared by thermolysis. The influences of synthetic condition for product were investigated. It was observed that the partical diameter has to do with radius of  $Ln^{3+}$  ion, the partical diameter or ultrafine powder of heavy rare-earth is longer than one of light rare-earth, and that X-ray diffraction peak change wide as formed ultrafine powder.

Keywords: ultrafine powder rare-earth oxide thermolysis