VO(PMBP)₂·nL型加合物的合成和性质研究

诸葛卸梅 陈克 施恩惠*

(浙江大学化学系, 杭州 310027)

关键词: 氧钒(IV) β-二酮 加合物

1-苯基-3-甲基-4-苯甲酰吡唑酮-5 (简称 PMBP) 是重要的螯合萃取剂,广泛地应用于金属离子的溶剂萃取 ⁽¹⁾,萃取体系中加入中性配体常发生协萃作用。这种作用可以通过形成加合物来解释 ⁽²⁾。本文合成了 VO (PMBP) $_2 \cdot$ nL 类型加合物,n 为 1 或 2 其中 L 为 $_2 \cdot$ H₂O、py (吡啶)、 $_3 \cdot$ H₂O、py (吡啶)、 $_3 \cdot$ H₃O、py (吡啶) H₃O、py (吡啶) H₃O、py (吡啶) H₃O、py (吡啶) H₃O、py (吡啶) H₃O、py (吡啶) H₃O、py (吡啶)

实验部分

1. 试剂

VOSO₄、y-MP 为 CP 级试剂, 其余均为 AR 级试剂。

2. 仪器

美国 Perkin Elmer 240 元素分析仪: 国产 DDS-11A 型电导率仪; TG、DTA 测定用北京光学仪器厂 PCT-1 差热天平; 美国 Nicolet 5 DX 富里埃变换红外光谱仪, 用 KBr 压片法; 日本岛沿 UV-240 自动记录紫外可见光谱仪; 日本 JES-FEIXG 型顺磁仪。

3. 加合物合成

加合物参照文献 (3) 方法合成, 元素分析数据列于表 1。

结 果 和 讨 论

1. 加合物的热分析

加合物 TG 曲线的第一台阶温度范围为 60-185C, TG 计算 (表 2) 及对第一步热分解产物进行红外分析表明失去水或吡啶类碱、该步骤为吸热过程、第一台阶以后的 TG 和 DTA 曲

本文于1989年3月1日收到。

^{*}八七届本科毕业生。

海 1 加合物的元素分析结果

Table 1 Elemental Analysis of Adducts VO(PMBP), • nL(%)

element	С]	4	N		
coord.	exptl,	calcd.	exptl.	calcd.	exptl.	calcd.	
compd.	value	value	value	value	value	value	
VO(PMBP) ₂ • 2H ₂ O	61.47	62.10	4.21	4.60	8.49	8.52	
VO(PMBP) ₂ • py	66.32	66.86	4.50	4.46	9.92	10.00	
$VO(PMBP)_2 \cdot \beta - MP \cdot H_2O$	65.73	65.57	4,91	4.82	9.51	9.56	
VO(PMBP) ₂ · y-MP	66.84	67.22	4.95	4.65	9.18	9.80	

线均类似, 其分解过程可表示如下:

VO(PMBP)₂ · nL(間)→VO(PMBP)(固) +nL(气)

$$VO(PMBP)_2(\boxtimes) \xrightarrow{[O]} V_2O_3(\boxtimes)$$

衰 2 加合物热键分析数据

Table 2 Thermo-Gravimetric Analysis of Adducts VO(PMBP)2 • nL

	temp. of	first lo	oss(%)	total loss(%)		
compound	first loss(C)	exptl.	caled.	exptl.	calcd.	
VO(PMBP) ₂ • 2H ₂ O	60-128	4.5	5.5	85.5	86.2	
VO(PMBP) ₂ • py	118-160	11.2	11.3	89.0	87.0	
VO(PMBP) ₂ • \$-MP • H ₂ O	125-185	15.3	15.1	87.0	87.6	
VO(PMBP), • y-MP	116-170	13.3	13.0	86.7	87.3	

2. 加合物的摩尔电导

在丙酮溶液中摩尔电导为 5-13.5cm $^2 \cdot \Omega^{-1} \cdot \text{mol}^{-1}$, 表明加合物都是非电解质 ⁽⁴⁾ .

3. 红外光谱

表 3 加合物红外光谱部分数据

Table 3 Infrared Data of Adducts VO(PMBP), • nL (cm⁻¹)

compound	^y (v-o)	v _(V-O) sensitive modes
VO(PMBP) ₂ • 2H ₂ O	· 960s 900s	570m 518m 475m
VO(PMBP) ₂ • py	960s,b	562m 515m 465m
$VO(PMBP)_2 \cdot \beta - MP \cdot H_2O$	975s 956m	568m 510m 470m
VO(PMBP) ₂ • 7-MP	969s 958m	560m 510m 498m 462m,b

m: medium, s: strong, b: broad

加合物红外光谱参照文献 ⁽⁵⁾ 归属,红外光谱数据列于表 3. 固体 VO(PMBP)₁·2H₂O 的红外光谱和文献 ⁽³⁾ 中 VO(PMBP)₂ 的相似,在 900cm⁻¹ 处显示 $\nu_{v=0}$ 谱带,在 900-850cm⁻¹ 范围显示较低 $\nu_{v=0}$ 谱带表明 VO(PMBP)₂·2H₂O 配合物具有聚合链的结构。与文献 ⁽³⁾ VO(PMBP)₂ IR 谱图不同之处,VO(PMBP)₂·2H₂O 在 960cm⁻¹ 左右处谱带强度变大,而 900cm⁻¹ 处谱带强度变弱。对于 VO(PMBP)₂·py、VO(PMBP)₂· β -MP·

 H_2O 、 $VO(PMBP)_2 \cdot \gamma - MP \cdot 900 \text{cm}^{-1}$ 处谱带完全消失,在 975-956 cm⁻¹ 处显示强谱带,表明不存在链状结构。

4. 电子光谱

表 4 加合物电子光谱数据

Table 4 Electronic Spectra Data of Adducts VO(PMBP), • nL

compound	position of bands(extinction coefficient)						
		$R_2 \rightarrow E_1$	B ₂ →B ₁				
	r(cm ⁻¹)	$\varepsilon(1 \cdot cm^{-1} \cdot mol^{-1})$	v(cm ⁻¹)	$\epsilon(1 \cdot cm^{-1} \cdot mol^{-1})$			
VO(PMBP)2 • 21120	14205	60.5	16835	52.2			
VO(PMBP) ₂ • py	13228	45.4	16949	41.1			
$VO(PMBP)_2 \cdot \beta - MP \cdot H_2O$	13298	47.5	16892	43.0			
VO(PMBP) ₂ • 7-MP	13263	44.7	16892	38.5			

VO(PMBP)₂ • nL 电子光谱分别在 13228-14205cm⁻¹ 和 16835-16949cm⁻¹ 范围显示两个配位场谱带(表 4),即谱带 I 和谱带 II . 按照 BG ⁽⁶⁾ 能级图,谱带 I 、 II 分别归属于 $b_2(dxy) \rightarrow e(dxz, dyz)$ 和 $b_2(dxy) \rightarrow b_1(dx^2 - y^2)$,与 H_2O 相比,吡啶类谱带 I 红移较显著,谱带 II 位移较小,而谱带 II $b_2(dxy) \rightarrow a_1(dz^2)$ 完全被宽的荷移谱带所掩盖,且谱带 I 很宽,说明 dxz、dyz发生了微小分裂。

5. 顺磁共振波谱

室温 VO (PMBP) 2·nL 在氣仿溶液中 EPR 谱具有八条超精细分裂谱线,而在液氮温度下 VO (PMBP) 2·nL 氯仿溶液 EPR 谱显示 VO(II)离子典型的各向异性特征。利用 Mn²⁺ 定标并计算出波谱参数列于表 5。

表 5 加合物 EPR 参数和键参数

Table 5 EPR Parameters and Bonding Coefficients for Adducts VO(PMBP), • nL

compound	g _o	A ₀ (Ġ)	g,,	R _L	A,,(G)	A _L (G)	K	β_1^2	β_1^2	e _#
VO(PMBP)2 • 2H2O	1.970	106.8	1.943	1.981	183.4	68.8	0.76	0.92	0.80	0.97
VO(PMBP) ₂ • py	1.971	105.0	1.945	1.981	180.7	66.8	0.75	0.92	0.78	0.90
$VO(PMBP)_2 \cdot \beta - MP \cdot H_2O$	1.971	104.6	1.944	1.980	181.1	66.4	0.75	0.92	0.78	0.95
VO(PMBP) ₂ • y-MP	1.972	104.7	1.945	1.981	182.0	66.6	0.74	0.92	0.77	0.90

室温各向同性 EPR 参数 g_0 值均低于 g_0 (2.0023), g_0 值的降低与基态 dx y 和低激发态间 自 旋一轨道偶合有关。超精细偶合常数 A_0 值随配合物共价性增大而降低,相对于 H_2O ,吡啶类 A_0 值降低说明加合物共价性增大。

各向同性和各向异性 EPR 参数关系如下 (7):

$$A_0 = (A_{11} + 2A_{\perp}) / 3$$

 $g_0 = (g_{11} + 2g_{\perp}) / 3$

偶合常数 A 与直接偶极项 p 和由 g 值各向异性引起的间接偶极相互作用有关 577。

$$A_{11} = -p K - \frac{4}{7} \beta_2^2 p - (g_e - g_{11}) p - \frac{3}{7} (g_e - g_{\perp}) p$$

$$A_{\perp} = -p K + \frac{4}{7} \beta_2^2 p - \frac{11}{4} (g_e - g_{\perp}) p$$

 $g_e - g_{11} = 8\beta_1^2 \beta_2^2 \lambda / \Delta E(^2 B_2 - ^2 B_1)$

 $g_e - g_\perp = 2\beta_2^2 c_\pi \lambda / \Delta E(^2 B_2 \rightarrow ^2 E_1)$

由表可见,EPR 谱参数 g、A 值与 VO(IV)配合物文献值 ⁽⁸⁾ 相近,键参数 β² 值接近于 1,表明未偶电子主要定域在钒离子的 α xy 轨道上。β² 是平面内 σ 键的 Ω 强力,通常遵循配体 σ 给予体强度。即 β² 随共价性的增加而降低,而(c_x)² 可以作为平面外 π 键的 Ω 强度,表 5(c_x)² 数据说明吡啶类加合物中电子发生更大的函域。

参考 文献

- (1) 徐辉远, 金属螯合物的溶剂萃取,中国工业出版社,北京, p.113 (1971).
- (2) Akaiwa, H., Kawamoto, H., Izumi, F., J. Inorg. Nucl. Chem., 37, 65(1976).
- (3) Menzel, E.R., Lorenz, D.R., Wasson, J.R., J. Inorg. Nucl. Chem., 38, 993(1976).
- (4) Geary, W.J., Coord. Chem. Rev., 7, 81(1971).
- (5) Caira, M.R., Haigh, J.M., Nassimbemi, L.R., J. Inorg. Nucl. Chem., 34, 3171(1972).
- (6) Ballhausen, C.J., Gray, H.B., Inorg. Chem., 1, 111(1962).
- (7) Salagram, M., Satyanarayana, N., Radhakrishna, S., Polyhedron, 5, 1171(1986).
- (8) Yen, T.F., Electron Spin Resonance of Metal Complexes, New York, P.111-130(1969).

SYNTHESIS AND CHARACTERIZATION

FOR VO(PMBP)₂ · nL ADDUCTS

Zhuge Xiemei Chen Ke Shi Enhui

(Department of Chemistry, Zhejiang University, Hangzhou 310027)

Four adducts of the type $VO(PMBP)_2 \cdot nL$ having composition $VO(PMBP)_2 \cdot 2H_2O$, $VO(PMBP)_2 \cdot py$, $VO(PMBP)_2 \cdot \beta - MP \cdot H_2O$ and $VO(PMBP)_2 \cdot \gamma - MP$ have been synthesized. All adducts are proved to be nonelectrolytes by conductance measurement. The TG and DTA curve of all these compounds show a first endothermic process corresponding to the loss of water or bases coordinated to vanadium. The assignment of stretching frequencies of V = O, V - O in these adducts were made. The UV spectra of $VO(PMBP)_2 \cdot nL$ exhibits two V - O in the term of the transition bands. The EPR parameters and bonding coefficients for these adducts are also reported.

Keywords: oxovanadlum(IV) β -diketone adduct