混合金属配合物 $MoS_4Cu_2(NC_5H_5)_4$ 的合成、晶体结构和成键特点

林 帆 林墀昌*

(中国科学院福州结构化学开放实验室,福州 350002) (福州大学化学系,福州 350002)

混合金属配合物 $MoS_4Cu_2(NC_3H_5)_4(NC_3H_5= 吡啶)$ 的晶体属于三斜晶系 P1 空间群。 思胞参数: a=9.465(5), b=9.463(4), c=14.053(3)人, $\alpha=95.16(3)$, $\beta=84.89(3)$, $\gamma=95.91(4)$ 。 , Z=2, V=1243(2)人³; Mr=667.7, $D_o=1.784g \cdot cm^{-3}$ 。 R 因子为 0.039,加权 R_o 因子为 0.045。该配合物簇幣 具有 D_{2d} 对称性, Mo-Cu 间距分别为 2.638人,2.663人。端配体吡啶与金属原子 Cu 间的 d- π * 反馈在一定程度上增强了 Mo-Cu 间的相互作用。

关键词: Mo-Cu混合金属配合物 d-π°反馈

硫代钼(钨)酸根离子 $MS_{4-n}O_n^2(M=Mo,W,n=2,3,4)$ 可同 Cu. Ag 等许多过渡金属原子形成混合金属配合物 CP. 它的一个重要特点是螯合生成的结构单元 MS_2M' 可以构筑出丰富多样的配合物簇船。它又可作为模拟物以研究某些含金属离子物质的生化行为。例如,对于 Cu-Mo 含硫配合物的研究就有助于表征反刍动物体内 Cu-Mo 对抗作用的生化机理 CP. 因此继续进行该系列配合物的研究,探讨其配位特点、金属原子间的相互作用以及谱学行为是很有意义的。

本文报导了混合金属配合物 MoS₄Cu₂(NC₅H₅)4 的合成、晶体结构和电子构型。

实验与处理

将 $1m \mod AgCu(SC(NH_2)_2)_4Cl_2^{(2)}$ 溶于 40ml 吡啶,加入 5ml 含 $1m \mod (NH_4)_2MoS_4$ 的 DMF 溶液。混合溶液在惰性气氛(Ar)下静置两天,烧杯壁上出现银镜,同时析出深红棕色 梭柱状晶体。该晶体易潮解,在空气中不稳定,在有机溶剂 CHBr₃,CH₂Cl₃中易分解。

在 Perkin-Elmer 983G 型紅外分光光度计上测到该晶体的 IR 谱(KBr)。Mo-S 的特征吸收蜂为: $v(m) = 475 \text{cm}^{-1}$, $v(s) = 456 \text{cm}^{-1}$. 分別属于有 D_{2d} 对称性的分子碎片 MoS₄ 的 b、e 不可约表示;配位吡啶的特征峰为: 吡啶环平面上总的对称伸缩 v = 1069, 1036, 1007cm⁻¹,吡啶环变形 $v = 599 \text{cm}^{-1}$.

选取合适的晶体包胶后在 CAD4 四园衍射仪上录谱。采用石墨单色化的 $MoK\alpha$ 射线 ($\lambda=0.7107$ 人), $\omega-20$ 扫描方式,在 1° <0 $<24^{\circ}$ 范围内收集到 $I>3\sigma(I)$ 的独立衍射点 3266 个。结构计算在 PDP11 / 34 计算机上用 SDP 程序进行。衍射强度经 LP 和 PSI 经验吸收校正、非氧原子坐标从直接法和傅立叶合成获得,以全矩阵最小二乘法修正坐标和各向异性温

本文于1989年3月25日收到。

国家自然科学基金会资助课题.

^{*} 道讯联系人。

度因子。H 原子坐标先用 HYDRO 程序加入,采用键长 H-C=1.00人,他角 H-C-C=120°,然后参加整个分子的全矩阵最小二乘法修正。氢原子的各向同性温度因子 取定值 4.0。晶体学参数为:Mr=667.7。三斜晶系,空间群 $P\overline{1}$, α =9.465(5)。 β =9.463(4)。c=14.053(3)Å, α =95.6(3)。 β =84.89(3), α =95.91(4)°, α =2. α =1.784g·cm⁻³。R 因子为 0.039,加权的 α 0 因子为 0.045。

EHMO 计算采用 R.Hoffmann 方法在 PDP11/34 计算机上完成。使用加权的 H_{ij} . Huckel 常数 K=1.75, 计算不迭代收敛,Mo、Cu 的 d 轨道取双 ζ 函数。分子中 σ 配位的吡啶基以假想的 N 原子代替。假想的 N 原子在计算中的轨道函数取氮原子的 2s 轨函。 ζ 指数和轨道能级 H_{ii} 取氮原子的 2p 轨道值。簇储对称性取 D_{2d} ,量化计算模型见图 1.

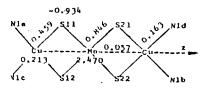


图 1 Mulliken 键级 Fig.1 Mulliken bond order

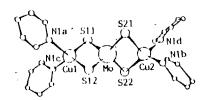


图 2 标题配合物构型 Fig.2 Configuration of the title complex

结果与讨论

标题配合物的原子坐标,等效温度因子列于表 1 中,分子中重要的键长、键角见表 2,分子构型见图 2.

MoS₄Cu₂(NC₅H₅)₄分子为三核直链状配合物,MoS₄四面体基本不畸变,N₂CuS₂是畸变四面体。两个 MoS₂Cu 结构单元形成两个平面,面间角为 89.9°。分子簇骼具有良好的 D₂₄ 对称性。四个配位的吡啶都保持良好的平面性。分子中 Mo-Cu 间距分别为 2.638人, 2.663 人, 与 Cu 的四面体共价半径 1.35人和 Mo 的金属单键半径 1.296人之和 2.65人相近,表明两金属原子间存在弱的 Mo-Cu 相互作用。EHMO 计算得到的 Mo-Cu 间 Mulliken 键级为 0.057 也说明了这一点。

标题分子的 Mo-Cu 间距要比 NH₄CuMoS₄、(PPh₃)₃MoS₄Cu₂ · 0.8CH₂Cl₂⁽¹⁾ 短 0.05人左 右(见表 3). 当端基是具有 π °空轨道的配体(CNT、SPhT、SC(NH₂)₂等)时,结构单元 MoS₂Cu 中的 Mo-Cu 间距 也比上述二分子短 0.05-0.07人。借助由分子模型 N₂CuS₂MoS₂CuN₂ 计算得到的电子构型可以解释该现象。从表 4 可见,按能级顺序,d(Mo)-p(S)-d(S)轨道中能级最高的 6e 轨道存在 d-d 反键作用(π °),其次为存在 d-d 弱成键作用的 $7b_2(\delta)$ 和含 d-d 非键作用的 $5a_1(n)$ 轨道,接着是两个具有 d-d 反键作用的 $6b_2$ 、 $2b_1(\delta$ °)轨道。这些分子轨道的能级相近,6e 与 $2b_1$ 间的能级差仅 0.77(eV),其余的含 d-d 成键作用的分子轨道,其能级均比 6e 轨道低 1.67(eV)以上。因此,当端基是具有 π °共轭轨道的基团时,它们与金属原子间的 $d-\pi$ ° 反馈将主要转移有 d-d 反键作用的分子轨道上的电子,增强了

Mo-Cu 相互作用,使间距缩短。这些配合物中存在 d- π 反馈作用可以从它们的配位原子 L 与 Cu 原子的间距 M′-L 要比该配位原子与 Cu 原子的单键共价半径和 $D_{M'-L}$ 短约 0.2 入得到 佐证(表 3)。该系列 Mo-Ag、W-Cu 配合物也有相似的 M-M′间距变化现象,因而,上述成键特点是这一系列含硫混合金属配合物所共有的。

双 1 原于全体

	_	_			_			
Table	1	Coor	dina	tes	ot:	A١	nm	¢

atom	<u> </u>	у	Z Z	Вы
Мо	0.13455(5)	-0.36550(5)	0.24999(4)	2.461(9)
Cu(1)	-0.07363(8)	-0.57357(8)	0.25005(6)	3.22(2)
Cu(2)	0.34446(8)	-0.15533(8)	0.25005(6)	3.61(2)
S(11)	0.1271(2)	-0.5622(2)	0.1521(1)	3.44(3)
S(12)	-0.0625(2)	-0.3730(2)	0.3477(1)	3.38(3)
S(21)	0.3238(2)	-0.3508(2)	0.3333(1)	3.34(3)
S(22)	0.1492(2)	-0.1764(2)	0,1667(1)	3.38(3)
N(Ia)	-0.1107(5)	-0.7536(5)	0.3252(3)	2.9(1)
N(1b)	0.3605(5)	0.0421(5)	·0.3307(4)	3,4(1)
N(1c)	-0.2530(5)	-0.6111(5)	0.1743(4)	2.9(1)
N(Id)	0.5418(5)	-0.1390(5)	0.1693(4)	3.2(1)
C(2a)	-9.1174(7)	-0.8821(6)	0.2778(4)	3.3(1)
C(3a)	~ 0.1339(7)	-1.0062(6)	0.3218(5)	3.8(1)
C(4a)	-0.1454(7)	-0.9991(7)	0.4207(5)	3.8(1)
C(5a)	− 0.1395(7)	-0.8701(7)	0.4708(5)	3.8(1)
C(6u)	-0.1232(6)	-0.7492(6)	0.4216(5)	3.4(1)
atom	x	у	2	B.,
C(4c)	-0.4996(6)	-0.6454(7)	0.0802(5)	3.8(1)
C(Sc)	-0.3701(7)	-0.6397(7)	0.0297(5)	4.1(2)
C(6c)	-0.2448(6)	-0.6227(7)	0.0786(5)	3.4(1)
C(2d)	0.5788(7)	-0.0352(7)	0.1114(5)	4.2(2)
C(3d)	0,7006(8)	-0.0246(8)	0.0539(5)	4.8(2)
C(4d)	0.7928(7)	-0.1286(8)	0.0525(6)	4.9(2)
C(5d)	0.7600(7)	-0,2362(7)	0,1103(6)	4.4(2)
C(6d)	0.6329(7)	-0.2382(7)	0.1681(5)	4.0(2)
C(2b)	0.2609(7)	0.1342(7)	0.3333(5)	3.8(1)
C(3b)	0.2650(7)	0.1542(7)	0.3890(6)	4.6(2)
	• • •	1 ' '		1 1 1
C(4b)	0.3719(8)	0.2926(7)	0.4479(6)	4.9(2)
C(5b)	0.4764(7)	0.2013(8)	0.4468(5)	4.5(2)
C(6b)	0.4660(7)	0.0776(7)	0.3872(5)	4,0(2)
C(2c)	-0.3816(7)	-0.6178(7)	0.2226(4)	3.4(1)
C(3c)	-0.5 062(6)	-0.6334(7)	0.1773(5)	3.5(1)

表 2 一些键长(A)和键角(°)

Table 2 Selected Bond Length(A) and Bond Angle(°)

Mo-Cu(1)	2.638(1)	Cu(1)-Mo-Cu(2)	, 179.94(3)	S(11)-Mo-S(12)	108,35(6)
Mo-S(12)	2.214(2)	S(11)-Mo-S(21)	109.89(6)	S(11)-Mo-S(22)	110,06(7)
Cu(1)-S(11)	2.244(2)	S(12)-Mo-S(21)	110.17(7)	S(12)-Mo-S(22)	109.87(6)
Cu(1)-N(1c)	2.067(5)	S(21)-Mo-S(22)	108.50(6)	S(11)-Cu(1)-S(12)	106.38(6)
Cu(2)-N(1b)	2.095(5)	S(11)-Cu(1)-N(1a)	115.05(15)	S(11)-Cu(1)-N(1c)	111,73(15)
Mo-Cu(2)	2.663(1)	S(12)-Cu(1)-N(1a)	112.04(15)	S(12)-Cu(1)-N(1c)	115.20(15)
Mo-S(21)	2.212(2)	N(1a)-Cu(1)-N(1c)	95.59(18)	S(21)-Cu(2)-S(22)	105,25(6)
Cu(1)-S(12)	2.239(2)	S(21)-Cu(2)-N(1b)	116.41(16)	S(21)-Cu(2)-N(1d)	109.87(15)
Cu(2)-S(21)	2,259(2)	S(22)-Cu(2)-N(1b)	109.86(15)	S(22)-Cu(2)-N(1d)	116.34(15)
Cu(2)-N(1d)	2.097(5)	N(1b)-Cu(2)-N(1d)	99.54(19)	Mo-S(11)-Cu(1)	72.61(6)
Mo-S(11)	2.212(2)	Mo-S(12)-Cu(1)	72.66(6)	Mo-S(21)-Cu(2)	73.10(5)
Mo-S(22)	2.210(2)	Mo-S(22)-Cu(2)	73.15(6)		
Cu(1)-N(1a)	2.068(5)				
Cu(2)-S(22)	2.257(2)				•

以吡啶为端基的标题配合物和 $WS_4Cu_4Cl(NC_5H_5)_6$ 的 M'-L 间距不比 $D_{M'-L}$ 短,两者的 Cu-N 平均键长分别为 2.082人和 2.070人,略大于 $D_{Cu-N}(2.05人)$,也大于吡啶环与 Cu (I)

四面体配位时 Cu-N 常见的键长 1.97-2.02 λ ⁶⁶ 。这是由于 HOMO(7e)以及能级与之相近的 $7b_2$, $5a_1$ 分子轨道都具有 Cu-N 反键作用,从面削弱了 Cu-N 键、Cu-N 键较弱可能是标题 配合物易测解、在空气和有机溶剂 $CHBr_3$ 、 CH_2Cl_2 中不稳定的因素。

表 3. 止 n* 反馈效应

complexes	$M-M'(^{A})$	M'-L(^Å)	$D_{M'-L}(^{\hat{A}})$	ref.
NH,CuMoS.	2.70	,		[1]
(PPh ₃) ₄ MoS ₄ Cu ₂ • 0.8CH ₂ Cl ₂	2.709			[1]
(PPh ₄) ₂ NCCuMoS ₄	. 2.627	1.892	2.12	[1]
(\Pra),(PhS)CuMoS	2.636	2.188	2.39	[4]
(isiPr ₁) ₂ (FitS) ₂ Cu ₂ MoS ₄	2.632	2.171	2.39	[4]
Py ₂ CuS ₂ MoS ₂ CuPy ₃	2.651	2.082	2.05	this paper
$(C_4H_0)_4NO_2M_0S_2CL(SC(NH_2)_2)$	2.647	2,191	2.39	[5]
MILCUWS,	1 2.72		Ì	[1]
$(PP_{3})_{3}Cu_{2}WS_{4} + 0.8CH_{2}Cl_{2}$	2.740			[1]
WS _a Cu _a Py ₆ Cl ₂	2,673	2.070	2.05	[3]
(PTE ₃) ₃ Ag ₂ MoS ₄ • 0.8CH ₂ Cl ₂	2.945		-	[1]
$(PPh_j)_4 \Delta g_4 (N_i o S_4)_2$	2.975			[1]
(PPh ₄) ₄ CNAgMoS ₄	2.868	2.082	2.29	[1]

表 4 填电子的 d(Mo)-p(S)-d(Cu)分子轨道的组成和成键

orbital order	orbital	energy	composition(%) of the orbital				main bonding characteristic
	D _{2d}	(eV)	Мо	Cu	s	N	
29,30	7e	-12.673	0.00	0.307	0.264	0.326	$\sigma^{\bullet}(Cu-N), \sigma^{\bullet}(Cu-S)$
27,28	6 <i>e</i>	-12.803	0.035	0.395	0.298	0.086	$\sigma^*(Cu-S), \pi^*(Mo-Cu)$
25	76,	-13.033	0.057	0.320	0.176	0.336	$\delta(Mo-Cu)$, $\sigma^*(Cu-N)$
7 1	5a,	-13,090	0.050	0.174	0.120	0.377	$n(Mo-Cu)$, $\sigma^{\bullet}(Cu-N)$
23	60,	-13.456	0.046	0.318	0.498	0.064	δ* (Mo-Cu)
}1)	2 <i>b</i> ,	-13,707	0.079	0.528	0.302	0.000	δ°(Mo-Cu)
13	16	-14.477	0.056	0.434	0.384	0.000	δ(Mo-Cu)
4,9	2e	-14,676	0.014	0.519	0.217	0.029	$\pi(Mo-Cu)$
,	201	-15.230	0.055	0.164	0.330	0.059	c(Mo-Cu)

设端:中国科学院福建物质结构研究所吴锑金同志帮助晶体录谱。特此致谢。

参考 文献

- (1) Muller, A. et al., Angew. Chem. Int. Ed. Engl., 20, 934 (1981) and references therein.
- (2) 林琳昌、林帆,结构化学,5(3),151 (1986).
- (3) 周公度等,结构化学,3(1),41 (1984).
- (4) Acost, S. R., Fürner, C. D. et al., J. Chem. Soc., Dulton Trans., 713(1983) and references therein.
- (5) 林墀昌、郑子山,结构化学,8(1),50(1989).
- (6) Levin, A. H. et al., J. Chem. Soc., Comm., 661 (1972).

SYNTHESIS, CRYSTAL STRUCTURE AND BOND ING CHARACTERISTICS OF MIXED METAL COMPLEX MoS₄Cu₂(NC₅H₅)₄

Lin Fan Lin Chichang

(Fuzhou Laboratory on Structural Chemistry, Academia Sinica, Fuzhou 350002)

(Department of Chemistry, Fuzhou University, Fuzhou 350002)

The mixed metal complex $MoS_4Cu_2(NC_5H_5)_4(NC_5H_5 = pyridine)$ is crystalized in the triclinic space group P1. There are two molecules per unit cell with the crystal parameters: a=9.465(5), b=9.463(4), c=14.053(3) Å, $\alpha=95.16(3)$, $\beta=84.89(3)$, r=95.91(4)°, V=1243(2) Å³. Mr=667.7, $D_c=1.784g$ cm⁻³, the final R=0.039 and $R_{\omega}=0.045$. The linear chain trinuclear skeleton of the MoS_4Cu_2 moiety has quite good D_{2d} symmetry, in which the two Mo-Cu distances are 2.638, 2.663 Å respectively. The $d-\pi$ back bonding (by EHMO method) between the terminal ligands pyridine and the metal atoms Cu makes the Mo-Cu interaction stronger to a certain extent.

Keywords: Mo-Cu mixed metal complex d-n*lock banding