JOURNAL OF INORGANIC CHEMISTRY

希土萘乙酸固体配合物的合成和表征

王则民 朱福森 曹锦荣 王 婷

(上海师范大学化学系,上海 2000234)

合成了 Ln(C₁₀H₇CH₂COO)₃·xH₂O(Ln=Y、La、Nd、Sm)固体配合物。由元素分析、IR、UV、XPS、¹H-NMR、TG-DTA 和 X-射线粉末衍射,确定其组成和成键特性。

关键词: 希土 1-萘乙酸 配合物

希土离子与萘乙酸配位作用研究甚少⁽¹⁾。本文合成了通式为 $Ln(NAA)_3$ 。 $xH_2O(NAA=1-C_{10}H_7CH_2COO)$ 的四种固体配合物,并研究了它们的性质和成键特性。植物生理试验初步表明:低浓度的轻希土萘乙酸配合物能显著促进作物扦插生根和生长,具有实用价值。

实 验

 Ln_2O_3 (99.9%), 其余试剂为分析纯。仪器: 美国 P-E2400 元素分析仪; 德国 S_p 75 红外光谱仪; 美国 H_p 8451 紫外可见光谱仪; N_p -1 光电子能谱仪; 法国 B.AC-80Q 核磁共振仪; 日本 D/max-3CX 光衍射仪; JTR-1 热重分析仪; CDR-1 差动热分析仪。

配合物合成: 使 1- 萘乙酸生成钠盐溶液,再与计量的氯化希土 ($LnCl_3 \cdot 6H_2O$)溶液反应,控制 pH=6.5,加热搅拌,生成沉淀。过滤、洗涤、干燥。产率均在 80%以上。

结 果 与 讨 论

- 一.新配合物的组成、性质:见表 1。配合物易溶于 DMF 和 DMSO,难溶于其余溶剂。配合物在 DMF 中的摩尔电导值表明:在此溶剂里是中性配合物分子。
- 二.IR 谱表明: 生成配合物后,萘乙酸的 3 个特征峰 $v_{C=0}1687 \text{cm}^{-1}$ 、 $v_{O-H}^{COOH}3090-2912 \text{cm}^{-1}$ 和 $\delta_{O-H}^{COOH}928 \text{cm}^{-1}$ 均消失。在 1550 和 1420 cm $^{-1}$ 附近,配合物出现了 v_{as}^{COO} 和 v_{s}^{COO} 两个新峰(见表 1)。且 Δv ($v_{as}^{COO}-v_{s}^{COO}$) 小于萘乙酸钠的 Δv (160 cm $^{-1}$),表明萘乙酸的羧酸根与希土离子呈双齿配位,生成 Ln O C 一型螯环 $^{(2)}$ 。
- 三.UV 谱表明: 1- 萘乙酸在 DMF 中产生 $\pi \to \pi^*$ 跃 迁 吸 收 光 谱, $\lambda_{max} = 302$ nm, $\varepsilon_{max} = 1158$ L·mol⁻¹·cm²。生成配合物后,最大吸收峰红移,摩尔吸光系数增大(见表 1), 说明配合物中 $\pi \to \pi^*$ 电子激发所需能量减少。

四.XPS 谱表明: 当 LaCl、·6H,O 生成 La(NAA)、·2H,O 后、La3d 电子结合能 E,从 837.8 降低为 836.4eV, 说明在配合物里 La3+离子是电子受体。萘乙酸 (NAAH) 生成 La(NAA)3。 2H,O 后, 羧基氧 O ls 的 E, 值从 532.8 降到 531.8cV, 这是由于在配位剂中, COO 与电负性 较大的氢结合;在配合物里,是与电负性较小的镧结合,使羧基氧的电荷密度增加。

五.1H-NMR 谱表明:当 NAAH 与 La3+配位后,-CH,COOH 上的 CH, 质子峰和萘环上各质 子峰都向高场移动⁽³⁾,并使"迫位"(H₈)质子峰裂分(见表 2)。这是由于 COO⁻与氢(电 负性较大)或镧(电负性较小)结合时,引起电荷密度变化的结果。

六.TG-DTA 测定表明:配合物热谱图与 NAAH 有显著差别。配合物均未出现熔化峰。镧、 钕、钐配合物在 100C 左右出现脱水吸热峰, 在 290C 以上均相继出现 3 个分解氧化放热峰。 而钇配合物只出现2个分解氧化放热峰(见表1),没有脱水吸热峰。

七.X-射线粉末衍射表明: NAAH 及配合物均为晶体,但其结构明显不同。镧、钕、钐配合 物有类似物相,但与钇配合物有较大差别,例如最强粉末线 $(I/I_0=100)$ 数据:

NAAH: $2\theta = 16.06, d = 6.403 \text{ Å}$; $Y(NAA)_3: 2\theta = 8.08, d = 12.696 \text{ Å}$;

 $Nd(NAA)_3 \cdot 2H_2O: 2\theta = 5.49, d = 18.678 \text{ Å}; Sm(NAA)_3 \cdot 2H_2O: 2\theta = 4.72, d = 18.707$ Å.

表 1 配合物的组成和性质

Table 1 Properties and Composition of the Complexes UV elemental analysis decompn. IR λ_{max} (nm) calc. (found)% $(S \cdot cm^2 \cdot mol^{-1})$ complex temp. (cm⁻¹) $(\varepsilon, L \cdot mol^{-1} \cdot$ (in DMF) (C) H₂O Ln C Н cm²) 13.81 67.09 4.19 0.00 1550 306 350 Y(NAA), 3.49 (13.76)(66.60)(4.20)(0.76)1420 (1557)463 3427 292 19.01 59.19 4.28 4.93 308 La(NAA), · 2H2O 3.54 1548 443 (19.09) (59.02)(4.29)(4.75)(1781)1420 507 3394 304 19.60 58.76 4.25 4.90 308 $Nd(NAA)_3 \cdot 2H_2O$ 3.46 1550 457 (19.47) (57.58) (4.23)(5.12)(2533)1420 521 3447 315 20.27 58.27 4.21 4.85 306 Sm(NAA)₁ · 2H₂O 4.18 1553 440 (20.13) (58.05)(4.17)(4.52)(1795)1425 498

表 2 ¹H-NMR 化学位移(溶剂 DMSO-d_s)

CH₂COOX(X≈H,La/3) Table 2 ${}^{1}H$ -NMR Chemical Shifts (δ , ppm)

compound	-CH ₂ -	H _{3,6,7}	H _{2,4,5}	H ₈	H ₂ O	-соон
NAAH	4.038	7.405-7.549	7.777-7.989	8.044		no obser.
La(NAA) ₃ · 2H ₂ O	3.785	7.315-7.472	7.686-7.922	8.009-8.130	3.469	

参考文献

- [1] Золин, В.Ф., и.др., Ж. Прикладной Спектроскопии, 17(1), 71(1972).
- [2] 王则民、傅楚瑾、曹锦荣、卢 峰, 高等学校化学学报, 11(4), 345(1990).
- [3] 陈 亮、胡玉仙、杨德明,波谱学杂志,1(2-3),153(1984).

STUDIES ON THE SYNTHESIS AND CHARACTERIZATIONS OF THE SOLID COMPLEXES OF RARE EARTHS WITH 1-NAPHTHALANEACETIC ACID

Wang Zemin Zhu Fusen Cao Jinrong Wang Ting
(Department of Chemistry, Shanghai Normal University, Shanghai 200234)

Four new solid coordination compounds of rare earth (III) with 1-naphthalaneacetate ion were synthesized. The general formula of these complexes in $Ln(NAA)_3 \cdot xH_2O(Ln=Y, La, Nd, Sm; NAA = 1-C_{10}H_7CH_2COO)$. The bonding specificities and composition of these complexes have been determined by the elemental analysis, IR, UV, XPS, ¹H-NMR, TG-DTA and X-ray powder diffraction.

Keywords: rare earth 1-naphthalaneacetic acid complex