高分子-AlCuCl₄ 膜及其气体透过行为探讨

施孝適 潘光明 孙社营

(中国科学院兰州化学物理研究所,兰州 730000)

把对一氧化碳具有选择吸附功能的液体吸附剂(AlCuCl₄-甲苯溶液和 AlCuCl₄-Pst-甲苯溶液)引入到 高分子(EC、Pst、ABS、CA)胶材料中,制成固体膜,考察了膜的气体透过性能,同时初步得出结果认 为, 膜中的 AlCuCl₄ 以电荷转移配合物形式与高分子配位结合,

关键词: 膜 气体透过性能 电荷转移 配合物 配位结合

前 言

一氧化碳的工业分离方法主要有深冷分离法、铜氨液吸收法⁽¹⁾和使用 AlCuCl₄ 甲苯溶液的 Cosorb 法⁽²⁾.后者需要予处理除去 CO 和 H₂O,若将亚铜固载到高分子中,由于高分子 的疏水作用可直接用于分离含水的 CO 混合气体,例如:聚苯乙烯 (Pst) -AlCuCl₄ 甲苯溶液⁽³⁾,Dust-Pst-AlCuCl₄ 固体吸收剂⁽⁴⁾等,这些都基于 AlCuCl₄ 对 CO 有效可逆选择吸附.本文把 AlCuCl₄ 引人到高分子胈中,以就探索出一种选择性分离 CO 的高分子胶分离方法.

实验部分

--.AlCuCl₄-甲苯溶液和 AlCuCl₄-Pst-甲苯溶液的合成⁽²⁾

氯化亚铜用浓盐酸加水重结晶,并依次用无水乙醇和乙醚洗涤,然后在 100℃ 真空干燥 10 小时.AlCl,升华后使用,甲苯用氯化钙干燥后使用.

AlCuCl₄-甲苯溶液(C-1): 在 250ml 烧瓶中加入无水三氯化铝 13.4g, 氯化亚铜 9.9g 和 100ml 甲苯, N₂ 保护下 50C 搅拌 4 小时, 得一褐色溶液.

AlCuCl₄-Pst-甲苯溶液(C-2): 另加 Pst 10.4g,其他条件同上,得一黑褐色液体. 二.高分子-AlCuCl₄ 膜的制备

将 AlCuCl₄ 的甲苯溶液与高分子材料(醋酸纤维素 CA、乙基纤维素(EC)、Pst、ABS 树脂)的溶液混合搅拌成胶状,静置片刻去泡,拉制成胶,干燥,测试前真空干燥 6~8 小时, 三.膜的气体透过性能测定

版的透气性能采用美国 ASTM D1434(1975)推荐的标准测试方法-可变体积法⁽⁵⁾测定, 仪器为美国 Customs 公司生产的 CS-135-241 型气体透过速率测定仪。

四.AlCuCl₄及其高分子膜的表征方法

1.红外光谱采用美国尼高莱特公司 FT-IR 10DX 型傅利叶红外光谱仪测得。

2. 膜的形态结构采用日本电子光学公司 JEM-1200EXIS 型电子显微镜作扫描电镜观察。

3.紫外可见光谱采用日本岛津 UV-3000 型紫外分光光度计或联邦德国 Zeiss 公司 UV-Vis

型紫外分光光度计测得.

结果与讨论

一.红外光谱表征

对一氧化碳具有吸附性能的 AlCuCl₄ 在结晶状态时,具有图 1 (1)的结构,但在溶液中 该配合物的结构还不太清楚,不过可以认为 Al 具有四配位结构,基本上是图 1(2)的形式,与 AlCl₃ 的二聚体结构图 1(3)相似.

在没有接触 CO 时, AlCuCl₄ 的甲苯溶液和 AlCuCl₄—Pst 的甲苯溶液均在 484cm⁻¹ 左右 有一较强的吸收峰,这是 AlCuCl₄ 的特征吸收 (γ_{Al-Cl}). 当与 CO 接触时,一个强的尖峰出现 在 2135cm⁻¹ 附近,如图 2 所示,此为吸附 CO 的伸缩振动吸收,抽真空后,此峰消失,这与 文献[6]符合.

图 2 AlCuCl₄或 AlCuCl₄-Pst 的 甲苯溶液红外光谱图 (a)与 CO 接触前 (b) 与 CO 接触后 Fig.2 Partial IR spectra of toluene solution of AlCuCl₄ or AlCuCl₄-Pst before (a) and after (b) contact with CO

表 1 CA 和 CA-AlCuCl4 膜的红外光谱数据

Table 1 Pertinent Infrared Spectral Data for CA and CA-AlCuCl₄ Membrane (cm⁻¹)

functional group membranes	C=0	c≪ ⁰ ₀	с-о-с
CA	1738.0	1219.1	1030.1
CA+(C-1)	1747.6; 1668.5	1232.6	1037.1
CA+(C-2)	1739.9; 1662.5	1234.6	1041.6

峰,此峰也可能是受 AlCuCl₄ 影响的 C=O 吸收峰; (3) 两种 CA-AlCuCl₄ 膜有关酯基的吸收 峰均向高波数有较大的移动,亦是受金属配合物的影响。

AlCuCl₄ 在 CA 膜中的存在方式,可能有如图 3 所示的两种结合状态.状态(1)使得 y_{C=0} 因羰基氧原子的配位而向低波数移动,状态(2)则因烷基氧原子的配位而向高波数移动, 在 CA-AlCuCl₄ 的两种膜中均观察到了这两种存在方式,说明两种结合状态都存在,只是程 度有所差异,状态(1) 在 CA+(C-2) 膜中突出,状态(2) 在 CA+(C-1) 膜中较显著.

图 3 CA-AlCuCl₄ 配合物的二种状态 M: Cu 或 Al Fig.3 Two structures of CA-AlCuCl₄ complex, M: Cu or Al

二.紫外光谱表征

图 4 表示了 AlCuCl₄ 的甲苯溶液和 AlCuCl₄-Pst 的甲苯溶液的紫外光谱图.图中在 280nm 和 370nm 处有两个峰,而 AlCuCl₄-Pst 还在 460nm 的位置出现一个吸收峰.283nm 处的吸收峰是甲苯芳环的 π - π ^{*}B 带吸收, 370nm 的吸收峰产生于甲苯芳环与 AlCuCl₄ 的相互 作用所形成的电荷转移配合物。AlCuCl₄-Pst 的甲苯溶液由于 AlCuCl₄ 与 Pst 中相邻的两个芳 环发生电荷转移形成了电荷转移配合物(结合方式如图 5 所示),所以出现了 460nm 处的吸收 峰,这种电荷转移配合物的存在正是 AlCuCl₄ 稳定的原因所在,使 AlCuCl₄-Pst 甲苯溶液具 有抗水性 ⁽⁷⁾。

- 图 4 AlCuCl₄(······)和 AlCuCl₄-Pst(一) 甲苯溶液的紫外光谱图
- Fig.4 UV-Vis spectra of toluene solution of AlCuCl₄(.....) and AlCuCl₄-Pst(--)

- 图 5 吸附了 CO 的 AlCuCl₄ 配合物的 示意结构
- Fig.5 Proposed structure of the polystyrene-AlCuCl₄ complex with absorbed carbon monoxide

将 AlCuCl₄ 引入几种高分子膜后,紫外可见光谱表明,均在 400-460nm 区域内有一宽的 吸收带 (如图 6 所示),说明膜中的配合物是以电荷转移配合物的形式存在的,其产生原因可 能是 AlCuCl₄ 与高分子链上的官能团之间的相互作用.

- 图 6 高分子-AlCuCl₄ 膜的紫外光谱图 (a) CA; (b) EC; (c) Pst; (d) ABS; (1) 聚合物;
 - (2) 聚合物+(C-1); (3) 聚合物+(C-2)
- Fig.6 UV-Vis spectra of polymer-AlCuCl₄ membrane (a) CA; (b) EC; (c) Pst; (d) ABS; (1) polymer; (2) polymer+(C-1); (3) polymer +(C-2)

9卷

三.CA-AlCuCl₄膜的形态

以 CA-AlCuCl₄ 膜为例,采用扫描电子显微镜 (SEM) 观察了高分子-AlCuCl₄ 膜的形态。两种 CA-AlCuCl₄ 的表面及断面照片如图 7、图 8 所示。两种膜具有相似的形态:表面

图7 CA+(C-1)的 SEM 照片 (a) 表面 (b) 断面

Fig.7 SEM photograph of CA+(C-1) membrane surface (a) and cross-section (b)

图 8 CA+(C-2)的 SEM 照片 (a) 表面 (b) 断面 Fig.8 SEM photograph of CA+(C-2) membrane surface (a) and cross-section (b)

· 62 ·

布满了点状的斑块,可能为配合物的晶粒,断面则呈蜂窝状结构。之所以形成这样的结构主 要原因可能是 AlCuCl₄ 溶剂和成膜溶剂二者的极性差别较大,沸点差别及对材料的溶解性能 差别都较悬殊,这样在形成膜过程中,逐渐分相,导致了蜂窝状结构的产生,成为多孔结 构。

四.高分子-AlCuCl₄膜的气体透过性能考察

高分子-AlCuCl₄ 膜透气性能的测定(结果见表 2),由于在成膜过程中各种高分子膜以甲苯 为溶剂都在不同程度上吸附了水蒸气,因此制备的膜认为是含微孔的结构。但我们初步可以 探讨,与相应的空白高分子膜相比,各种气体的透过系数均有不同程度的提高,同时大多数 膜表现出对 CO 的选择透过效果。对于 EC 和 Pst 膜,AlCuCl₄ 的添加使得 CO 的透过系数有 所提高,而某些气体如 N₂ 透过系数却有所下降,与未添加 AlCuCl₄ 的高分子膜相比,CO 对 N₂ 的选择透过性得到了较大的改善,说明 AlCuCl₄ 的存在对 CO 的透过有促进输送作用。

对于 ABS 膜, 添加 AlCuCl₄ 后, 各种气体的透过速度也有较大的提高, 同时仍保持了一定的选择比(α_{co/N₃} = 2.50 或 2.70). 添加 AlCuCl₄ 的 CA 膜, 前述已经表明属多孔结构, 所 得透气性测定结果与 CA 均质膜的结果难于进行比较, 这有待于继续深入工作.

-	P unit	Р					α		
membranes	cm · cm	N	CU	u	CO	CO		ч /со	COAN
	$cm^2 \cdot S \cdot cmHg$	182	CII4	112	002	0	1127 192	H27 CO	
EC	10 ⁻⁸	5.32	7.08	13.9	4.82	4.86	2.60	2.90	0.91
EC+(C-1)	10 ⁻⁸	2.46	9.20	11.7	3 67	5.32	4.80	2.20	2.17
EC+(C-2)	10 ⁻⁸	4.58	11.7	20.4	J.29	9.73	4.45	2.10	2.12
Pst	10 ⁻⁷	4.09	7.00	16.3	5.09	5.40	3.48	3.02	1.15
Pst+(C-1)	10-7	4.46	10.25	22.75	6.52	7.72	5.10	2.90	1.76
ABS	10-10	0.29	0.11		2.98	0.88			3.03
ABS+(C-1)	10 ⁻¹⁰	2.30	6.65		9.20	6.21			2.70
ABS+(C-2)	10-9	1.48	3.93		5.52	3.70			2.50
CA	10-11	1.00		66.0	58.4	4.60	66.0	14.3	4.60
CA+(C-1)	10 ⁻⁷	2.05	3.30	8.42	1.05	2.80	4.11	3.01	1.36
CA+(C-2)	10-7	2.43	3.57	10.4	1.22	3.03	4.28	3.43	1.25
									-

表 2 聚合物膜及聚合物-AlCuCl,膜的选择渗透性 Table 2 Permselectivity of Polymer and Polymer-AlCuCl, Membrane

* 20°C, AlCuCl₄: 20%(wt)

另外,对同一种高分子膜,吸附剂的两种存在形式 (C-1和 C-2) 作用效果差别不大, 只是在透过率方面,添加 C-2 提高的程度更大。原因可能是吸附剂引入高分子并成为固态膜 之后,两种形式的 AlCuCl₄都同样地得到了高分子材料的稳定保护作用。

小 结

本文首次把对一氧化碳具有选择吸附功能的液体吸附剂(AlCuCl₄-甲苯溶液和 AlCuCl₄-Pst-甲苯溶液)引人到高分子(EC、Pst、ABS、CA)膜材料中,制备了高分子 -AlCuCl₄ 固态膜,对各种气体的透过性能作了考察,其中乙基纤维素、聚苯乙烯和 ABS 的 膜表现出一定的一氧化碳选择透过效果,同时初步得出结果认为,膜中的 AlCuCl₄ 以电荷转 移配合物形式与高分子配位结合,有比较好的化学稳定性。

参考文献

[1] 犬饲恒彦,石油学会志(日),20(4),317(1977).

[2] Hirai, H. et al., Bull. Chem. Soc. Jpn., 56(8), 2519(1983).

[3]Hirai, H. et al., Bull. Chem. Soc. Jpn., 60(1), 385(1987).

[4] Hirai, H. et al., Makromal Chem., Rapid Commun., 3, 95(1982).

[5] 施孝通等, 膜科学与技术, 8(1), 50(1988).

[6]Hirai, H. et al., Bull. Chem. Soc. Jpn., 59(1), 109(1986).

[7]Toshima, N.; Kanaka, K. et al., J. Macromol. Sci-Chem., A25(10 / 11), 1349(1988).

AN INVESTIGATION IN CHARACTERIZATION

AND GAS PERMSELECTIVITIES OF

POLYMER-AlCuCl₄ MEMBRANE

Shi Xiaoyu Pan Guangming Sun Sheying

(Lanzhou Institute of Chemical Physics, Academia Sinica, Lanzhou 730000)

The liquid adsorbents possessing selective adsorbing function for carbon monoxide $(AlCuCl_4-tolueue solution and AlCuCl_4-Pst-toluene solution)$ was incorporated into polymer membrane materials (EC, Pst, ABS, CA), then the gas separation membranes were made, and characterization their gas permsclectivities were studied. The results showed that, the AlCuCl_4 in membrane is linked with functional group of polymers as a charge-transfer complexes.

Keywords: membrane gas permeability charge-transfer complex coordination