1993年3

\$ 研究简报 \$ \$

溶胶-凝胶法合成 β -SiC 超细粉末

肖汉宁 杜海清

(湖南大学化学化工系,长沙 410082)

关键词: 溶胶-凝胶法 碳化硅 超细粉末

引 言

目前文献报道的溶胶法合成 β -SiC 超细粉末多以 TEOS(Si(OC₂H₅)₄) ⁽¹⁾ 和/或 PTES(C₆H₅Si(OC₂H₅)₃) ⁽²⁾ 等有机硅和碳的化合物为原料, 经溶胶-凝胶过程制 SiC 先驱体, 然后在惰性气氛中热解合成、由于所用原料价格较贵, 制备出的 SiC 粉末成本高, 难以实现工业化生产。本文旨在探讨采用廉价硅源来制备 β -SiC 超细粉末的可行性, 以加速我国 SiC 高技术材料的研究和应用。

实 验

实验用硅源是由水玻璃用离子交换法制成的硅溶胶、分子式为 $mSiO_2 \cdot nH_2O$ 、胶体粒径约 15nm、Na₂O 等杂质总含量 <0.2wt%。碳源采用炭黑、平均粒径约 20nm、灰分 <0.1wt%。

分别取 SiO₂ 含量为 10wt%的硅溶胶 200ml, 按表 1 中的 C/Si 值加人炭黑, 球磨 7-10 小时, 使炭黑均匀分散于硅溶胶中, 取出后于烧杯中边搅拌边滴加 1mol·l⁻¹ 盐酸 5-10ml, 然后在 80℃恒温水浴中凝胶化 24 小时,除去残液,并在 200℃下干燥至恒重。将干凝胶块在 研钵中破碎过 60 目筛后,在 Ar 气氛中于 1400~1700℃下反应合成。

对所制备的 SiC 粉末进行了化学分析(参照日本 JISR 6124 SiC 的化学分析方法)、相分析(日本 D/max-IIIA 型 X 射线衍射仪和德国 Specord 75 型红外分析仪)和粒度分析(日本 CAPA-500 型粒度分析仪)。

结果及讨论

--.原料的 C / Si 值

在 1600℃、90 分钟条件下不同 C/Si 值对 SiC 粉末性能的影响如表 1 所示。由 SiO₂ 还原碳化合物 SiC 的总反应式可表达为 ⁽¹⁾:

 $SiO_2(s)+(1+2a)C(s) = aSiC(s)+(1-a)SiO(g)+(1+a)CO(g)$

式中 a 表示 SiC 的转化率。根据表 1 结果,当 C / Si<2.8 时,可获得接近理论转化率而 游离 C 含量在 1wt%以下的 β -SiC 超细粉末。

本文于1991年12月3日收到。

随着 C/Si 值的降低、粉末颗粒变粗,且均匀性变差,如图 1 所示。这可能是过量的 SiO₂ 存在加速了晶体长大过程。

表 1 C/Si 值对 SiC 粉末性能的影响

Table 1 Properties of SiC Powders vs C / Si Value

sample no.	C/Si (mol)	yield of SiC		free C	particle size	nadan aslawa	
		a¹ .	a*	(wt%)	(μm)	powder colour	
1	3.0	1.00	0.91	6.92	0.12	grey-black	
2	2.8	0.90	0.86	0.85	0.16	grey-yellow	
3	2.6	0.80	0.78	0.58	0.23	grey—yellow yellow yellow	
4	2.4	0.70	0.70	0.16	0.31		
5	2.2	0.60	0.61	0.13	0.57		

note: at-theoretical value; ac-experimental value

表 2 C/Si 值对 SiC 粉末化学组成的影响

Table 2 Chemical Compositions of SiC powders vs C / Si Value

sample no.	C/Si (mol)	chemical compositions(w1%)								
		total Si	total C	free Si	free C'	0	SiC			
1	3.0	64.77	34.63	0.10	6.92	0.23	92.51			
2	2.8	69.09	30.28	0.16	0.85	0.21	98.26			
3	2.6	69.34	30.02	0.32	0.58	0.38	98.29			
4	2.4	70.05	29.51	0.26	0.16	0.78	97.99			
5	2.2	69.81	29.06	0.48	0.13	1.43	96.59			

表 2 为在 1600 C、90 分钟条件下合成的 β -SiC 粉末的化学组成。当 C/Si 值在 2.4~2.8 范围变化时,SiC 的含量变化不大,都可达 98wt%。游离 C 随 C/Si 值的降低而减少,而游离 Si 和 O (SiO₂)则随 C/Si 值的降低而增加。当 C/Si = 2.6~2.8 时,合成的 SiC 粉末颗粒细小且较均匀,具有良好的可烧结性 (3)。

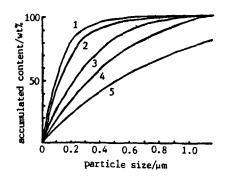


图 1 SiC 粉末的粒径分布曲线
Fig. 1 Size distribution of SiC powders synthesized
at 1600℃ for 90 minutes

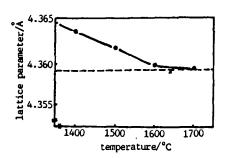


图 2 SiC 粉末的晶格常数与合成温度的关系 Fig.2 Lattice parameter of SiC powders vs temperatures

二. 合成温度

 2^{4} 试样在不同合成温度下得到的 SiC 粉末的晶格常数 (XRD 结果) 如图 2 所示,图中虚线为 β -SiC 标样的测定值 (4.3589Å) (4)。随合成温度的提高,粉末的结晶度变好,晶格常数逐步接近标样值。

图 3 为 2^{+} 试样在不同合成温度下的红外光谱。显然,在较低的合成温度下存在有未反应的 SiO₂,直至 1600℃,SiO₂ 才完全消失。

三. 反应时间

不同反应时间对 SiC 的转化率和粒度的影响如图 4 所示(2[#]试样)。随着反应时间的延长,SiC 的转化率开始增长较快。在 90 分钟后,粉末中 SiC 晶相含量 (XRD 定量结果) 的增加速率明显减慢,取而代之的是晶粒的迅速长大。因此,要获得高纯超细的 β-SiC 粉末,应采用较高的合成温度和相对较短的反应时间来制备,如在 1600℃下反应 90 分钟。

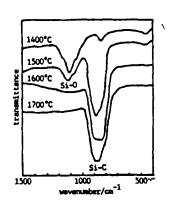


图 3 SiC 粉末的红外谱图 Fig.3 IR spectra of SiC powders

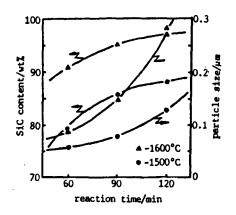


图 4 粉末的 SiC 含量及粒度与反应时间的关系 Fig.4 SiC content and particle size of the powders vs reacting time.

结论

以硅溶胶和炭黑为原料,用溶胶-凝胶法可直接合成出高纯超细的 β -SiC 粉末,其 SiC 含量可达 98wt%以上,粒径为 0.1~0.2 μ m。用该法合成 SiC 粉末具有工艺简单、原料来源广、成本低及无需任何物理或化学提纯过程等优点。实验得出适宜的合成工艺条件为 C/Si=2.6~2.8,合成温度 1600~1700℃,反应时间 60~90 分钟。

参考文献

- [1] Hidchiko Tanaka, Cermic International, 14, 109(1988).
- [2] Hatakeyama, F., Kanzaki, S., J. Am. Ceram. soc., 73, 2107(1990).
- [3] 肖汉宁,碳化硅超细粉末的制备及热压烧结机理和强化增韧的研究。湖南大学博士学位论文 (1991).
 - [4] JCPDS International Center for Diffraction Data, File No.29-1129.

SOL-GEL SYNTHESIS OF ULTRAFINE β -SiC POWDERS

Xiao Hanning

Du Haiqing

(Department of Chemistry and Chemical Engineering, Hunan University, Changsha 410082)

Ultrafine β -SiC powders were synthesized from silica sol and carbonblack by sol-gel processing. The powders contained SiC up to 98wt%, showed spheric particles and narrow size distribution, has a mean size about 0.1 to 0.2 μ m and were not or soft agglomerates. The synthesic conditions and properties of β -SiC powders were investigated.

Keywords:

sol-gel SiC

ultrafine powder