Na[Co(OX)₂(N,N'-Me₂en)]的合成、 异构体分离、空间构型推定和性质研究

马桂林* 许文琴 周家银** 凌秀华**

(扬州师范学院化学系,扬州 225002)

合成了具有三个手性原子的二草酸根、N,N[/]-二甲基乙二胺合钴(Ⅲ)酸钠配合物。用离子交换法分离了该配合物三对可能的对映体: $\Delta(SS)\Lambda(RR), \Delta(SR)\Lambda(RS)和\Delta(RR)\Lambda(SS)对映体,用质子核磁共振法推定了异构体的空间构型,用高效液相色谱法测定了三对对映体的平衡生成率,其相对比值(34.0℃)为:<math>\Delta(SS)\Lambda(RR):\Delta(SR)\Lambda(RS):\Delta(RR)\Lambda(SS)=58:33:9$.各对映体 *d*-*d* 跃迁最大吸收峰波数次序为: $\Delta(SS)\Lambda(RR)>\Delta(SR)\Lambda(RS)>\Delta(RR)\Lambda(SS).$

关键词: 钴配合物 N,N'-二甲基乙二胺异构体 不对称配合物

具有光学活性的不对称配合物可广泛用作对映体配合物的拆分剂,在某些不对称有机合成中的催化性能亦为人们所重视^(1,2,3)。迄今,仅以中心金属离子为不对称中心的不对称配合物已有不少研究报道,但对于含有不对称配位原子的不对称配合物的研究报道较为少见。我们 曾 合 成 了 具 有 两 个 不 对 称 中 心 的 不 对 称 配 合 物 : Na[Co(OX)₂(Mc-cn)], Na[Co(OX)₂(Mc₃cn)],并研究了它们的 Δ(R)Δ(S)和 Δ(S)Δ(R)对映体不对称配位原子上的重氢化作用^(4,5)。本文报道了含有三个不对称原子的三元不对称配合物:

Na[Co(OX)₂(N,N'-Mc₂cn)](N,N'-Mc₂cn: N,N'-二甲基乙二胺)的合成、异构体的分 离、异构体空间构型的推定及性质研究。

实验部分

一.主要试剂及仪器

Co(C₂H₃O₂)₂•4H₂O、K₂C₂O₄•H₂O、二氧化铅、N,N'-二甲基乙二胺、四丁基氯化 铵、甲醇等均为分析纯试剂。

R-90HS 核磁共振仪(日立); 高效液相色谱仪(带有 TRIROTAR-V 输液系统, UVIDEC-100IV 紫外可见分光检测器)(日本分光); 323 型分光光度计(日立)。

二.配合物合成及异构体分离

将 1g(4mmol)Co(C₂H₃O₂)₂ • 4H₂O 和 2.94g(16mmol)K₂C₂O₄ • H₂O 溶于 20ml 水后,加人 0.35g(4mmol)N,N'-Me₂cn,用稀盐酸调溶液的 pH≈5,分批加入 3g PbO₂。将反应混合物水 浴加热(约 70℃)、搅拌 30 分钟,过滤。将滤液用水稀释后,用 Dowex 1×8 (Cl⁻型) 阴离 子交换树脂柱(Φ4.8×30cm)提纯和分离异构体,淋洗液为 0.1mol • l⁻¹NaCl 溶液。经淋洗,

本文于1991年9月13日收到。

^{*} 通讯联系人,**扬州师院化学系87届毕业生。

柱上产生两个色层,上层为绿色的[Co(OX)₃]³⁻,下层为紫色的[Co(OX)₂(N,N'-Me₂cn)]⁻。将 紫色的流出液减压浓缩至小量体积,冷却,得到 Δ(RR)Λ(SS)、Δ(SR)Λ(RS)和 Δ(SS)Λ(RR)混 合异构体晶体,产量: 1.04g(产率 75%)。

将混合物晶体溶于水后,用 Dowex 1×8 (Cl⁻型). 阴离子交换树脂柱(Φ2.7×60cm)进行 异构体分离,淋洗液为 0.05mol・l⁻¹NaCl-0.01mol・l⁻¹HCl 溶液。经淋洗,柱上产生三个紫 色色层,由下至上分别为 Δ(SS)Λ(RR)、Δ(SR)Λ(RS)和 Δ(RR)Λ(SS)异构体(异构体的空间构型 推定见"结果与讨论")。将各异构体流出液分别减压浓缩至小量体积,静置 1-2 天,即有紫色 晶体析出,用 pH 为 2 的稀盐酸溶液重结晶,得到紫色针状晶体。

三.¹H NMR 谱测定

以 D₂O-DCl(pH=2) 为溶剂, DSS 为内标, 分别测定三对对映体的甲基质子化学位移。结果列于表 2。

四.高效液相色谱测定

将一对对映体晶体溶于恒温在 34.0℃下的稀 Na₂CO₃ 溶液 (pH 约为 10) 中,使配合物的 浓度为 3×10⁻³mol・Г¹。间隙取出部分反应溶液,以稀醋酸酸化 (pH 约为 5) 后用高效液相 色谱仪测定其色谱,直至产生的三对对映体的峰面积之比不再变化时为止。由各峰面积相对 比值可求得相应异构体的平衡生成率。实验结果列于表 2。

测定条件: 流动相为 5mmol • l⁻¹ • Bu₄NCl 的 MeOH-H₂O(1:9V / V)溶液; 流速: 2ml • min⁻¹; 检测波长: 260nm; 色谱柱: Fine pack SiLC₁₈ 色谱柱(Φ4.6×250mm); 测定温度: 34.0℃。

图 1 为 $\Delta(SS)\Lambda(RR)$ -[Co(CX)₂(N,N'-Mc₂cn)]⁻的洗脱曲线随时间的变化。

图 1 Δ(SS)Λ(RR)-[Co(OX),(N,N'-Mc,cn)] 的洗脱曲线随时间的变化(34.0℃)

Fig.1 Change of the elution curve with time for $\Delta(SS)\Lambda(RR) - [Co(OX)_2(N,N'-Me_2en)]^{-}(34.0C)$

peak I: $\Delta(SS)\Lambda(RR)$ -isomer

peak $\Pi: \Delta(SR)\Lambda(RS)$ -isomer

pcak III: $\Delta(RR)\Lambda(SS)$ -isomer

结果与讨论

一配合物的组成和性质

各对映体的元素分析数据列于表 1。由表 1 可见,实测值与计算值比较吻合。配合物的组

成可表示为 Na[Co(OX)₂(N,N'-Mc₂en)] · nH₂O(n=0-2)。

各配合物晶体均易溶于水、甲醇,微溶于乙醇,难溶于丙酮、乙醚、DMSO、二氯甲 烷、氯仿、四氯化碳。在空气中缓慢风化。

	found(calcd.)(%)				
complex	С	N	н	Co	
	25.05	7.41	4.15	15.16	
$a(SS)A(RR) = Na[Co(OR)_2(Me_2ch)] \cdot 2H_2O$	(25.14)	(7.33)	(4.23)	(15.42)	
	24.90	7.39	4.15	15.24	
$A(SR)\Lambda(RS) - Na[Co(OX)_2(Me_2cn)] \cdot 2H_2O$	(25.14)	(7.33)	(4.23)	(15.42)	
$A(\mathbf{D},\mathbf{D})A(\mathbf{C}) = N_{\mathbf{C}}(\mathbf{C}_{\mathbf{C}}(\mathbf{O}\mathbf{Y}) (\mathbf{M}_{\mathbf{C}},\mathbf{r}))$	27.70	8.23	3.50	17.31	
$\Delta(\mathbf{R}\mathbf{R})\Lambda(\mathbf{S}\mathbf{S}) = \operatorname{Na}[\operatorname{Co}(\mathbf{O}\mathbf{X})_2(\operatorname{Me}_2\operatorname{en})]$	(27.76)	(8.10)	(3.50)	(17.03)	

表1 配合物的元素分析数据

二.异构体的分离和空间构型的推定

如图 2 所示, Na[Co(OX)₂(N,N'-Mc₂en)]配合物存在六个可能的光学异构体: Δ (SS)、 A(RR)、 Δ (SR)、A(RS)、 Δ (RR)和 A(SS)异构体。因 Δ (SS)和 A(RR)异构体为对映体,性质极 其相似,在本实验条件下用 Dowex 1×8(Cl⁻型)阴离子交换柱进行异构体分离时,对映体不能 被拆分,而以外消旋体存在于同一色层中。 Δ (SR)和 A(RS)、 Δ (RR)和 A(SS)异构体同样如 此。故制得的为 Δ (SS)A(RR)、 Δ (SR)A(RS)和 Δ (RR)和 Δ (SS)三对对映体晶体。

图 2 [Co(OX)₂(N,N'-Mc₂cn)]⁻的 六个可能的异构体

Fig.2 Six possible isomers of $[Co(OX)_2(N,N'-Mc_2cn)]^-$

各对映体的室间构型用¹H NMR 法推定。由图 2 所示分子模型可知, Δ(RR)Δ(SS)对映体 的两个甲基分别位于两个草酸根螯合环上方,处于草酸根螯合环的磁屏蔽区,甲基质子化学 位移应出现在高场,故将甲基质子化学位移出现在高场(δ =1.84ppm,d,J=6Hz)(见表2)的 异构体推定为 Δ (RR) Λ (SS)异构体. Δ (SS) Λ (RR)异构体的两个甲基分别位于两个草酸根螯合 环的侧上方,处于草酸根螯合环的去屏蔽区,甲基质子化学位移应出现在低场,故将甲基质 子化学位移出现在低场(δ =2.20ppm,d,J=6Hz)的异构体推定为 Δ (SS) Λ (RR)异构体。而 对于 Δ (SR) Λ (RS)异构体,两个甲基分别位于一个草酸根螯合环上方和另一个草酸根螯合环侧 上方,其甲基质子化学位移应分别出现在高场和低场,故将甲基质子化学位移分别出现在高 场(δ =1.80ppm,d,J=6Hz)和低场(δ =2.23ppm,d,J=6Hz)的异构体推定为 Δ (SR) Λ (RS)异 构体。

三.异构体的电子光谱

各对映体在 210-700nm 波长范围内的电子光谱吸收峰波数 (ν_{max})和摩尔消光系数 ε 的对数 (logε) 列于表 2。

表 2 Na[Co(OX)₂(N,N'-Me₂en)]的¹H NMR 化学位移,电子光谱和平衡生成率数据

Table 2 ¹H NMR Chemical Shifts, Electronic Spectra and Distributions of

isomer	¹ H NMR(-CH ₃) ^{a)}	v _{max} / 10 ³ cm ⁻¹ (loge) ^{b)}	rclative ^{c)} abundancc(%)
$\Delta(SS)\Lambda(RR)$	$\delta = 2.20$ ppm, d, J = 6 Hz	18.18(2.12) 25.71(2.32) 42.02(4.42)	58
Δ(SR)Λ(RS)	δ = 2.23ppm, d, J = 6Hz δ = 1.80ppm, d, J = 6Hz	18.15(2.11) 25.64(2.31) 41.84(4.41)	33
$\Delta(RR)\Lambda(SS)$	$\delta = 1.84$ ppm, d, J = 6Hz	18.12(2.10) 25.64(2.31) 41.84(4.41)	9

Isomers a E	uilibrium for	Na[Co(OX)),(N,N'	'-Me,en)]
-------------	---------------	-----------	---------	-----------

a) solvent: $D_2O-DCl(pH=2)$; b) solvent: 0.01mol • $l^{-1}HCl$; c)34.0°C

根据吸收峰的位置和强度,可将 $18 \times 10^3 \text{ cm}^{-1}$, $25 \times 10^3 \text{ cm}^{-1}$ 附近的谱峰标识为 d-d 跃迁 吸收, $4.2 \times 10^3 \text{ cm}^{-1}$ 附近的谱峰标识为 LMCT 吸收。对于 $\text{Co}^{3+}(d^6$ 电子组态)的八面体配合物,高自旋配合物极少, Co^{3+} 只有与 F⁻离子等弱场配体才能形成高自旋配合物,且 d-d 跃迁 吸收峰在 $11000-15000 \text{ cm}^{-1}$ 范围中 ⁽⁶⁾,故可认为 Na[Co(OX)₂(N,N'-Me₂cn)]为低自旋配合物。根据 d^6 组态低自旋配合物的 Tanabe-Sugano 图 ⁽⁷⁾ 和电子跃迁选择定则,可分别将 $18 \times 10^3 \text{ cm}^{-1}$, $25 \times 10^3 \text{ cm}^{-1}$ 附近的 d-d 吸收峰标识为 $^1A_{1g} \rightarrow ^1T_{2g}$ 跃迁吸收。

由表 2 亦可知, 异构体不对称配位氮上的甲基空间取向不同, N, N'-Me₂cn 的配体场强 度亦稍有差异。随 Δ(SS)Δ(RR), Δ(SR)Δ(RS)和 Δ(RR)Δ(SS)空间构型次序, 异构体的第一, 第二 *d*-*d* 跃迁吸收峰均发生红移。这是由于不对称配位氮上的甲基取向不同空间位阻效应不 同的缘故。如上所述,对于 Δ(SS)Δ(RR)异构体,两个甲基均分别位于草酸根螯合环侧上方, 甲基与草酸根螯合环之间的立体排斥作用最小, N,N'-Me₂cn 表现出最大的配体场强度。对于 Δ(RR)Δ(SS)异构体,两个甲基均分别位于草酸根螯合环上方,与草酸根螯合环之间的排列作 用最大,相应有最小的配体场强度,而 Δ(SR)Δ(RS)异构体的 N,N'-Me₂cn 的配体场强度介于 上述两者之间。

四.异构体的平衡生成率

在一定 pH 值的水溶液中,由于 OH 离子的催化作用,不对称配位氮可发生翻转,从而 使含有不对称配位氮的不对称配合物发生异构化作用⁽⁸⁾。通过实验发现,异构化速度随水溶 液 pH 值增大而加快。当 pH 值大于 10 时, 异构化比较显著。以某一对对映体晶体溶于 pH = 10 的 Na₂CO₃ 水溶液中, 因不对称配位氨的翻转而转化为其他对映体。一定温度下, 当 异构化反应达到平衡后, 各异构体的百分含量即为其平衡生成率。其异构化作用可用下式表示:

$\Delta(SS)\Lambda(RR) \rightleftharpoons \Delta(SR)\Lambda(RS) \rightleftharpoons \Delta(RR)\Lambda(SS)$

异构化反应机理如图 3 所示。由图 3 可见,配合物 A 在 OH⁻离子作用下生成脱质子体 B. 脱质子体 B 的不对称配位氨可经过三种不同形式的构型翻转:某一个氨原子发生构型翻转 或两个氮原子同时发生构型翻转,分别生成脱质子体 C、D、E,经结合水中的 H⁺离子后生成 异构体 F、G、H。其中 E 与 B 构型完全相同,H 与 A 构型亦完全相同,故某一配合物 A 经 异构化后,生成 Δ(SS)Δ(RR)、Δ(SR)Δ(RS)和 Δ(RR)Δ(SS)这三对对映体的混合物。

在一定温度下,以任意一对对映体为异构化起始反应物,均可得到与表 2 所示的同一平 衡生成率结果。

由表 2 可知, 平衡生成率因异构体空间构型不同而有较大差异。这种差异决定于甲基与 草酸根螯合环之间的排斥作用, 排斥作用越小越有利于相应异构体的生成。如前所述, 这种 排斥作用的次序为: Δ(SS)Δ(RR) < Δ(SR)Δ(RS) < Δ(RR)Δ(SS), 故平衡生成率有相反的次 序。

图 3 [Co(OX)₂(N,N'-Mc₂cn)]⁻的不对称氨翻转异构化反应机理 Fig.3 Mechanism for reversible isomerization at the chiral nitrogen center of [Co(OX)₂(N,N'-Mc₂cn)]⁻

参考文献

[1] 徐志固,现代配位化学,化学工业出版社,217页(1987).
[2] 上野景平,キレート化学(5) 错体化学实验法[1],南江堂,504页(1975).
[3] Nakajima, K. et al., Bull. Chem. Soc. Jpn., 63, 2620(1990).
[4] 马桂林、许宜铭,扬州师院学报(自然科学版),10(4),41(1990).
[5] 马桂林、许宜铭,扬州师院学报(自然科学版),11(2),40(1991).
[6] 上野景平,キレート化学(1) 构造篇[1],南江堂,167页(1976).
[7] 上野景平,キレート化学(1) 构造篇[1],南江堂,515页(1976).

[8] Kojima, M. et al., Inorg. Chim. Acta, 117, 1(1986).

STUDY ON SYNTHESIS, SEPARATION OF ISOMERS, STERIC STRUCTURE AND CHARACTERIZATION

FOR $Na[Co(OX)_2(N,N'-Me_2cn)]$

Ma Guilin Xu Wenqin Zhou Jiayin Ling Xiuhua (Department of Chemistry, Yanzhou Teacher's College, Yangzhou 225002)

The complex of sodium bis(oxalato) (N,N'-dimethylethylenediamine) cobalt(III) has been synthesized. It belongs to the ternary and asymmetric octahedral complex with three chiral atomic centers. And three possible racemic pairs of the complex, $\Delta(SS)\Lambda(RR)$, $\Delta(SR)\Lambda(RS)$ and $\Delta(RR)\Lambda(SS)$ -isomer, were separated by ion exchange method. the steric structure of the isomers were characterized by ¹H NMR method. The isomer distribution at equilibrium were determined by high performance liquid chromatographic method. The relative value is : $\Delta(SS)\Lambda(RR)$: $\Delta(SR)\Lambda(RS)$: $\Delta(RR)\Lambda(SS) = 58$: 33 : 9(34.0°C). The wave number of d-d absorption peaks decreased in the order of $\Delta(SS)\Lambda(RR) > \Delta(SR)\Lambda(RS) > \Delta(RR)\Lambda(SS)$.

Keywords: cobalt complex N,N'-dimethylenhylenediamine isomer asymmetric complex