Eu³⁺ 在碱土金属卤磷酸盐中的 格位对称性及电荷迁移态

滕玉洁 黄竹坡

(北京大学化学系,北京 100871)

在 254nm 紫外光激发下研究了 Eu^{3+} 在 $Sr_3Ca_2(PO_4)_3Cl$ 基质中的发光光谱。以 Eu^{3+} 为结构探针测定了 Eu^{3+} 所处晶格的点对称性。研究了 $M_5(PO_4)_3X$ (M=Ca, Sr, Ba; X=F, Cl, Br) 基质组成改变对 Eu^{3+} 电荷迁移态的影响,以及温度对 $Ca_5(PO_4)_3Cl$: Eu^{3+} 发光强度的影响。

关键词: 电荷迁移态 铕 发光 碱土金属 卤磷酸盐

引言

碱土金属卤磷酸盐是一类优良的发光基质材料。我们曾研究过 Eu^{2+} , Ce^{3+} , Tb^{3-} . Dy^{3+} 在该类基质中的发光及 Ce^{3+} 对 Tb^{3+} , Dy^{3+} 的敏化发光。获得了高效紫外荧光材料及绿色荧光材料 $^{(1,2)}$ 。 本文继续研究了 Eu^{3+} 在其中的荧光光谱。测定了 Eu^{3+} 所处晶格的点对称性、研究了 Eu^{3+} 的电荷迁移态随基质组成的变化及 $Ca_*(PO_4)_*Cl: Eu^{3+}$ 的温度猝灭。

试样的制备及荧光性质的测试方法见文献[2]。

结果和讨论

一.激发光谱和发射光谱

图 1a 是 $Sr_3Ca_2(PO_4)_3Cl$: Eu^{3+} 的激发光谱。图中在 200-290nm 范围有一个很强的宽激发带,峰值波长为 254nm,属于 Eu^{3+} 电荷迁移态跃迁产生的吸收峰。所以在 254nm 紫外光激发下 Eu^{3+} 在 $Sr_3Ca_2(PO_4)_3Cl$ 中的发光是通过电荷迁移态吸收激发能,再弛像到 5D_3 能级而发光。激发光谱中 300-420nm 范围内的锐线激发峰是 Eu^{3+} 的 4f-4f 跃迁产生的,对应着 Eu^{3+} 的 7F_1 - 5D_0 跃迁。

图 1b 是 Eu^{3+} 的发射光谱图。图中 575nm 处的小峰是 $^5D_0-^7F_0$ 跃迁产生的,592nm 附近的三条锐线峰对应于 $^5D_0-^7F_1$ 的跃迁,617nm 附近的五条线谱是 $^5D_0-^7F_2$ 跃迁产生的。 Eu^{3+} 荧光光谱谱线的数目、波长等与其所处的近邻环境的对称性有关系,在不同的对称性的晶体场中受晶体场作用不同, $^5D_0-^7F_1$ 的跃迁数目也有所不同 $^{(3,4)}$ 。利用群论方法在理个上可以计算出 Eu^{3+} 在不同的点群对称性时 $^5D_0-^7F_1$ 的跃迁数目 $^{(4)}$ 。 $Sr_3Ca_2(PO_4)_3CI:Eu^{3+}$ 属磷灰石结构,其中金属离子有两种格位:九配位的 M(I),处于 C_3 对称和七配位的 M(II)处于 C_5 对称 $^{(2,3)}$ 。表 1 中列出理论计算得到的 $^{(4)}$ 以及本工作实验测得的处于这两种格位的 Eu^{3+} 离子 $^5D_0-^7F_1$ 跃迁数目。

- 图 1 Sr₃Ca₂(PO₄)₃Cl: Eu³⁺的:
 - (a) 激发光谱(A_{em} = 617nm),
 - (b)发射光谱(λ_α=254nm)
- Fig.1 (a) excitation spectrum ($\lambda_{em} = 617$ nm),
 - (b) emission spectrum ($\lambda_{ex} = 254$ nm)
 - of Sr₃Ca₂(PO₄)₃Cl: Eu³⁺

表 1 Eu3+在 Sr₃Ca₂(PO₄)₃CI 中的能级跃迁及发射峰的数目

Table 1 Energy Level Transition and Number of Emission Peaks of Eu³⁺ in Sr₃Ca₂(PO₄)₃Cl

energy level transiton	number of transition			
	theoretical		awarimantul	peak wave length(nm)
	C_3	. C,	experimental	
$^{5}D_{0} - ^{7}F_{0}$	1	1	1	575
$^{5}D_{0} - ^{7}F_{1}$	2	3	3	585, 592, 597
$^5D_0 - ^7F_2$	3	5	5	611, 614, 617, 621, 624

由表 1 中数据看出由实验测得的 Eu^{3+} 的 $^5D_0 ^7F_1$ 跃迁数目与理论计算得到的 C_s 点群的跃迁数目吻合,因此可以认为 Eu^{3+} 在 $Sr_3Ca_2(PO_4)_3Cl$ 基质中处于 6h 格位,属 C_s 点群。

二.组成对电荷迁移态(CTS)的影响

1.碱土金属离子的影响

图 2 是在 $M_5(PO_4)_3Cl(M=Ca,Sr,Ba)$ 三种基质中 Eu^{3+} 的 CTS 的激发光谱。由图看出随着基质中碱土金属离子的改变, Eu^{3+} CTS 激发带的峰值波长按 Ca^{2+} – Sr^{2+} – Ba^{2+} 的顺序依次增长,分别为 257, 264 和 276nm。相应的 Eu^{3+} 的 CTS 能级重心分别为 39,911; 37,879 和 $36,232cm^{-1}$ 。

(b) Sr₅(PO₄)₃Cl: Eu³⁺和

(c) Ba₅(PO₄)₃Cl: Eu³⁺的激发光谱

Fig.2 Excitation spectra of

(a) Ca₅(PO₄)₃Cl: Eu³⁺,

(b) Sr₅(PO₄)₃Cl: Eu³⁺and

(c) Ba₅(PO₄)₃Cl: Eu³⁺ ($\lambda_{em} = 617$ nm)

上述三种基质都属磷灰石结构六方晶系,空间群为 $P6_3/m$ 。所以 Eu^{3+} 的 CTS 宽带吸收的变化是由碱土金属离子不同引起的。在 $M_5(PO_4)_3$ Cl: Eu^{3+} 结构中 Eu^{3+} 的近邻配位有氧离子和氯离子,次近邻为碱土金属离子即存在 Eu-O-M 和 Eu-Cl-M 的化学键 $^{(5)}$ 。碱土金属对 Eu^{3+} 的作用是通过 Eu^{3+} 和 O^{2-} 及 Cl 间的电荷迁移发生作用。 Ca^{2+} , Sr^{2+} , Ba^{2+} 的离子半径依 次增大,电负性减小吸引电子的能力依次减弱,因之在 $Eu^{3+}-O^{2-}-M^{2+}$ 和 $Eu^{3+}-Cl^{-}-M^{2+}$ 中 O^{2-} 和 Cl^{-} 上的电子云将依 Ca, Sr, Ba 的顺序逐渐远离 Ca, Sr, Ba 而更靠近 Eu^{3+} 。因此 O^{2-} 和 Cl^{-} 离子向 Eu^{3+} 进行电荷迁移是依 Ca, Sr, Ba 顺序更容易进行。因而它们的 CTS 的激发波长峰值按 Ca, Sr, Ba 顺序依次向长波移动。

2. 卤离子对 Sr₄(PO₄)₄X: Eu³⁺的 CTS 的影响

图 3 是 Eu³+在 Sr₅(PO₄)₃X(X=F, Cl, Br)中的激发光谱的带谱部分,即 Eu³+离子 CTS的激发峰。可以看出随着卤离子 F⁻, Cl⁻, Br⁻依次改变峰值依次移向长波,其峰值分别为: 254, 264 和 294nm,求得 Eu³+的 CTS 的能级分别为 39,370; 37,879 和 34,014cm⁻¹。因此在 Sr₅(PO₄)₃F 中 Eu³+的电荷迁移激发态需要的激发能最高,而 Sr₅(PO₄)₃Br 中则最低。氟磷酸盐、氯磷酸盐和溴磷酸盐的结构相同,阳离子都为 Sr²+,所以 CTS 的激发峰值波长的移动,是由于卤离子改变引起的。JΦrgensen ⁶⁶ 指出 CTS 激发带的位置,决定于中心离子配位阴离子的电负性及中心离子的电负性。在具有磷灰石结构的 Sr₅(PO₄)₃X 中,中心离子 Sr²+和它的配位阴离子 X⁻直接配位。中心离子 Sr³+的电负性不变,但卤离子依 F⁻, Cl⁻, Br⁻顺序电负性依次降低。电负性低卤离子与 Eu¹+离子的电子云重叠程度就大,电子移向 Eu³+离子就更容易,电荷迁移激发能就越小,因之依 F,Cl,Br 顺序 CTS 峰值波长向长波移动。

图 3 (a) Sr₅(PO₄)₃F: Eu³⁺,

(b) Sr₅(PO₄)₃Cl: Eu³⁺和

(c)Sr₅(PO₄)₃Br: Eu³⁺的激发光谱

Fig.3 Excitation spectra of

(a) $Sr_5(PO_4)_3F : Eu^{3+}$,

(b) Sr₅(PO₄)₃Cl: Eu³⁺ and

(c) $Sr_5(PO_4)_3Br : Eu^{3+} (\lambda_{cm} = 617nm)$

三.温度对 Srs(PO4)3CI 发光强度的影响

在 254nm 紫外光激发下 $Sr_5(PO_4)_3Cl$: Eu^{3+} 的发光是 4f-4f跃迁的锐线光谱,温度对发射峰峰值波长影响很小,但对其强度影响却很大,随温度升高发生温度猝灭。

图 4 为在 254nm 紫外光激发下温度改变对 $Sr_5(PO_4)_3Cl$: Eu^{3+} 的 $^5D_0-^7F_2$ 跃迁发射强度的影响。从图看出随着温度升高,发光强度降低,160℃时的发射强度已是室温下的发光强度的一半。即猝灭温度是比较低的,这是因为实验所测的发射光谱是用 254nm 波长光激发的,从图 2 看出在此波长下基态电子被激发到电荷迁移激发态而没有跃迁到 5D_1 能级上,电荷迁移态跃迁受晶体场与外界条件的影响较大。因此被激发到电荷迁移态的电子在温度升高时容易发生无辐射跃迁,使从 CTS 驰豫到 5D_1 再跃迁至 7F_1 的电子数目减少, Eu^{3+} 的发光强度降低.可以预期 254nm 激发下的 615nm 的峰强度的猝灭温度要比 394nm(f-f跃迁激发峰)激发下

的 615nm 的峰强度的猝灭温度低。图 5 是 254nm 和 394nm 光激发下 Eu^{3+} 在 $Ca_5(PO_4)_3Cl$ 中 $^5D_0-^{7}F_2$ 发射强度随温度的变化,可以看出 394nm 光激发下的猝灭温度更高,猝灭温度约高 105 C_2

- 图 4 Sr₅(PO₄)₃Cl: Eu³⁺的 615nm 峰的 发射强度随温度的变化
- Fig. 4 Temperature dependence of emission intensity at 615nm of Sr₅(PO₄)₃Cl: Eu³⁺
- 图 5 Ca₅(PO₄)₃Cl: Eu³⁺的 615nm 峰的温度猝灭 (a) 394nm 激发, (b) 254nm 激发

Fig.5 Temperature dependence of emission intensity of Ca₅(PO₄)₃Cl: Eu³⁺ at 615nm as excited into

(a) 394nm and (b) 254nm

小 结

- 1.以 Eu^{3+} 离子为结构探针,确定了 Eu^{3+} 在 $Sr_3Ca_2(PO_4)_3Cl$ 基质中处于 6h 格位,其晶格的 点对称性为 C、点群。
- $2.Eu^{3+}$ 离子随着 $M_5(PO_4)_3X$ 基质(M=Ca, Sr, Ba; X=F, Cl, Br)组成改变,其电荷迁移态激发峰值的波长均随 F^- , Cl $^-$, Br $^-$ 和 Ca $^{2+}$, Sr $^{2+}$, Ba $^{2+}$ 的顺序向长波移动。
- 3.测定了 Eu^{3+} 在 $Ca_5(PO_4)_3Cl$ 中发光强度随温度的变化,指出以 254nm 光激发(CTS)比 394nm 光激发(f-f 跃迁激发峰)的猝灭温度低。

参考文献

- [1] 李铭华、黄竹坡,北京大学学报(自然科学版), 26(2), 200-6(1990).
- [2] 李铭华、黄竹坡、廖复辉、中国希土学报, 8(1), 26(1990).
- [3] Eiberger, B., Greenblatt, M., J. Solid State Chem., 41, 44(1982).
- [4] 张思远,发光与显示,(3),18(1983).
- [5] Mathew, M., Mayer, I., Dickens, B., Schroeder, L.W., J. Solid State Chem., 28,79(1979).
- [6] Jørgensen, C. K., Mol. Phys., 5, 271(1962).

SITE SYMMETRY AND CHARGE TRANSFER STATE OF Eu³⁺ IN M₅(PO₄)₃X

Teng Yujie Huang Zhupo

(Department of Chemistry, Peking University, Beijing 100871)

Photoluminescent properties of Eu^{3+} in $Sr_3Ca_2(PO_4)_3Cl$ host has been studied. Eu^{3+} ions were determined to be located on the 6h sites of C_s point symmetry in $Sr_3Ca_2(PO_4)_3Cl$ by the method of luminescent probe.

The center of charge transfer state (CTS) of Eu^{3+} ions in $M_5(PO_4)_3X$ (M = Ca, Sr, Ba; X = F, Cl, Br) shifts to longer wavelength as the host cations or anions change from lighter elements to heavier ones. Temperature dependence of the emission intensity of Eu^{3+} in $Ca_5(PO_4)_3Cl$ has been investigated and the quenching temperature of Eu^{3+} emission by the excitation into its CTS (254nm) is lower than that by the excitation into its f-f transitions (394nm).

Keywords: charge transfer state europium luminescence alkali earth halophosphate