# 镧系双 2:17 钨磷杂多配合物异构体的 合成和性质研究 Ⅲ.

王守国 彭 军 于 明 陈亚光 瞿伦玉\* (东北师范大学化学系,长春 130024) 王 广

(东北师范大学测试中心,长春 130024)

本文合成了通式为(NH<sub>4</sub>)<sub>17</sub>[Ln( $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>)<sub>2</sub>]·xH<sub>2</sub>O(Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy)的镧系双 2:17 钨磷杂多配合物纯净异构体。并用<sup>31</sup>P NMR、IR、UV-Vis 吸收光谱、极谱、循环伏安和磁化率 等对其进行了表征。对  $\alpha_1$ 、 $\alpha_2$ 和  $\beta$  异构体间的性质进行了比较。 $\alpha_2$  异构体的 Ln-O 键离子特性强于  $\alpha_1$ 异构体。

#### 关键词: 钨磷杂多酸盐 镧系元素 Wells-Dawson 结构杂多酸

具有 Wells-Dawson 结构的 P<sub>2</sub>W<sub>18</sub>O<sub>62</sub> 化合物,已经合成出 α 和 β 两种异构体. 二者差别 仅在于绕其阴离子结构的 C<sub>3</sub> 轴,存在相差 60°角的一个 W<sub>3</sub>O<sub>13</sub> 基团. P<sub>2</sub>W<sub>18</sub>O<sub>62</sub><sup>62</sup> 失去一个 WO<sup>4+</sup>基团后的缺位衍生物,若空穴位于"带"上,称之谓 1-型异构体;若空穴位于"帽"上,则 称之谓 2-型异构体.目前已得到  $\alpha_1$ -P<sub>2</sub>W<sub>17</sub>、 $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>以及 β-P<sub>2</sub>W<sub>17</sub> 的化合物.但 β-P<sub>2</sub>W<sub>17</sub> 尚未确定出空穴位置. 缺位 P<sub>2</sub>W<sub>17</sub> 型化合物很容易和过渡金属及镧系离子反应,以恢复 其饱和的母体结构.LnL<sub>2</sub>(Ln=Ce<sup>II</sup> 或 Ce<sup>IV</sup>, L=P<sub>2</sub>W<sub>17</sub>O<sub>61</sub><sup>60</sup>)型化合物最初由 Peacock 和 Weakley 报道<sup>(1)</sup>.当时未将异构体离析.由于  $\alpha_2$ -异构体有向其他异构体转化的可能性,在 制备过渡元素取代的  $\alpha_2$ -P<sub>2</sub>W<sub>17</sub> 衍生物的过程中,常常得到多种异构体的混合物.我们成功地 合成了 LnL<sub>2</sub> 型  $\alpha_1^{(2)}$ 、 $\alpha_2$ (见本文)和 β<sup>(3)</sup> 三种纯净的异构体.这类化合物与金属卟啉有类似 的结构性质,具有传导电子的特性,此外,镧系元素的杂多化合物具有优异的催化性能<sup>(4)</sup>. 本文通过<sup>31</sup>P NMR、IR、UV-Vis 吸收光谱,极谱、循环伏安等手段对该类希土元素配合物 进行了系统研究.

### 实验部分

一. 仪器与试剂

所用试剂均为分析纯.

<sup>31</sup>P NMR 在 FX-100FT NMR 光谱仪上测定,室温,40.26MHz.紫外-可见吸收光谱 在 DU-8B 光谱仪上测定.红外吸收光谱在 ALPHA CENTAURT FT IR 光谱仪上测定.极

本文于1992年7月3日收到.

国家自然科学基金资助项目.

<sup>\*</sup> 通讯联系人。

诸和循环伏安使用 384B 型极谱仪, 303A 型电极。磁化率在 MB-2 型磁天平上测定, 室温, 法拉第法。

二. (NH\_)17Ln(a2-P2W17O51)2·xH2O的合成

首先参照文献[5]制取母体化合物 α<sub>2</sub>--(NH<sub>4</sub>)<sub>10</sub>-P<sub>2</sub>W<sub>17</sub>O<sub>61</sub>•xH<sub>2</sub>O(简记为 α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>),用 <sup>31</sup>P NMR 监测产品纯度. 然后取 α<sub>2</sub>--P<sub>2</sub>W<sub>17</sub> 13.74 克溶于 70 毫升水中,滴加 HCl 调 pH 值 为 6.0,滴加含 0.0015mol Ln<sup>3+</sup>溶液,加热至 80℃,十分钟后,冷却至室温,有油状物析出, 于 0℃转变成固体.分离,在温水中重结晶,产率 50%.其中,铈盐为棕色,镨盐为淡绿 色,钕盐淡紫色,其他盐几乎无色,但颜色均较之 α<sub>1</sub>异构体深.

#### 三. 元素组成分析

NH4 的分析,利用甲醛和铵盐作用生成相当量的酸,用 NaOH 标准溶液测定氨量。其他 元素的分析参见文献[3]。分析数据见表 1.

| Table 1 Analytical Data of $(NH_4)_{17}Ln(\alpha_2-P_2W_{17}O_{61})_2 \cdot xH_2O^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |            |                   |                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-------------------|-------------------|--|--|--|
| $Ln(\alpha_2 - P_2 W_{17})_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ln%      | W%         | H <sub>2</sub> O% | NH <sub>4</sub> % |  |  |  |
| $(NH_4)_{17}La(P_2W_{17}O_{61})_2 \cdot 17H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6(1.5) | 69.2(68.9) | 3.5(3.4)          | 3.5(3.4)          |  |  |  |
| $(NH_4)_{17}Ce(P_2W_{17}O_{61})_2 \cdot (40H_2O_{17}O_{17})_2 \cdot (40H_2O_{17}O_{17})_2 \cdot (40H_2O_{17}O_{17})_2 \cdot (40H_2O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17}O_{17$ | 1.5(1.5) | 66.0(65.8) | 7.5(7.6)          | 3.2(3.2)          |  |  |  |
| (NH <sub>4</sub> ) <sub>17</sub> Pr(P <sub>2</sub> W <sub>17</sub> O <sub>61</sub> ) <sub>2</sub> • 39H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5(1.5) | 66.4(66.0) | 7.5(7.4)          | 3.3(3.2)          |  |  |  |
| (NH <sub>4</sub> ) <sub>17</sub> Nd(P <sub>2</sub> W <sub>17</sub> O <sub>61</sub> ) <sub>2</sub> • 31.5H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5(1.5) | 66.8(66.9) | 6.0(6.1)          | 3.3(3.3)          |  |  |  |
| (NH <sub>4</sub> ) <sub>17</sub> Sm(P <sub>2</sub> W <sub>17</sub> O <sub>61</sub> ) <sub>2</sub> • 25H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6(1.6) | 67.6(67.7) | 4.9(4.9)          | 3.4(3.3)          |  |  |  |
| (NH <sub>4</sub> ) <sub>17</sub> Eu(P <sub>2</sub> W <sub>17</sub> O <sub>61</sub> ) <sub>2</sub> • 32H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6(1.6) | 66.7(66.8) | 6.2(6.2)          | 3.3(3.3)          |  |  |  |
| (NH4)17Gd(P2W17O61)2 · 30H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.7(1.7) | 67.1(67.0) | 5.8(5.8)          | 3.3(3.3)          |  |  |  |
| (NH <sub>4</sub> ) <sub>17</sub> Dy(P <sub>2</sub> W <sub>17</sub> O <sub>61</sub> ) <sub>2</sub> • 29H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8(1.7) | 67.5(67.1) | 5.6(5.6)          | 3.3(3.3)          |  |  |  |

表1 (NH4),,Ln(a2-P2W17O61)2·xH2O\*分析数据

\* Noted as  $Ln(\alpha_2 - P_2 W_{17})_2$ ; calculated values are in parentheses.

#### 四.摩尔比测定

用分光光度计测定  $Ln^{3+}$ :  $\alpha_2 - P_2 W_{17}$  不同摩尔比溶液的吸光度( $\lambda = 193$ nm),发现吸光值在  $Ln^{3+}$ :  $\alpha_2 - P_2 W_{17}$  为 0.51:1 处出现折点,说明配合物为  $LnL_2$  型.

### 结果与讨论

-. <sup>31</sup>P NMR: NMR 技术是检验杂多化合物异构体纯度的重要手段. La( $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>)<sub>2</sub> 的铵盐 的<sup>31</sup>P NMR(见图 1)表明,与 La<sup>3+</sup>配位的配体中确有两类不同的 P 原子.其中一类为半 Wells-Dawson 结构中的磷原子 P(2),另一类为缺位半 Wells-Dawson 结构中的磷原子 P(1).线状谱带表明此两类磷原子未有偶合作用,与其他金属取代的 Wells-Dawson 结构类 似,高场峰为 P (2)峰,低场峰为 P (1)峰.P (2)远离空穴,受配位效应影响较小,化学 位移与配体相比无明显变化.而 P (1)靠近空穴,受配位效应影响较大,化学位移向高场移 动,表明  $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>与 La<sup>3+</sup>配位后,P (1)的电子云密度增大,这是杂多配离子负电荷增加 (-10→-17)和形成 La-O 键的结果. $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>的过渡金属衍生物的 P(1)化学位移值与其母 体化合物  $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>相比,均向高场移动(见表 2).这是由于过渡金属与  $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>中缺位处 的氧发生键合作用后,使  $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>的缺陷特征受到削弱,化学位移值向饱和结构的 P<sub>2</sub>W<sub>18</sub>移 动.这种成键作用的共价性越强(如  $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>Mo),这种移动就越大.将表 2 中  $\delta$ 变化值由 小到大排列得到如下次序:

La 
$$(\alpha_2 - P_2 W_{17})_2 < \alpha_2 - P_2 W_{17} Zn < \alpha_2 - P_2 W_{17} Mo$$

表明与  $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>Mo 不同,在 La( $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>)<sub>2</sub> 中 La-O 键具有强的离子键特征.另外,若扣除 溶剂作用对<sup>31</sup>P NMR δ值的影响,La( $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>)<sub>2</sub> 与 La( $\beta$ -P<sub>2</sub>W<sub>17</sub>)<sub>2</sub> 的 P(1) δ值相近,推测 β 异构体中 P(1) 原子的化学环境与  $\alpha_2$  异构体中的 P(1)原子更相似,则其缺位也在"帽"上.从 母体化合物  $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>和  $\beta$ -P<sub>2</sub>W<sub>17</sub>的δ值也可得到证明.



### 表 2 La(α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>)<sub>2</sub>的<sup>31</sup>P NMR 化学位移数据

|--|

| δ(ppm)                           |        |        |                    |                 |  |  |  |
|----------------------------------|--------|--------|--------------------|-----------------|--|--|--|
| compound                         | P(1)   | P(2)   | solvent            | cation          |  |  |  |
| $\alpha_2 - La(P_2W_{17})_2$     | -8.35  | -14.35 | H₂O                | NH4             |  |  |  |
| $\alpha_1 - La(P_2W_{17})_2$     | -10.05 | -13.32 | H <sub>2</sub> O   | K <sup>+</sup>  |  |  |  |
| $\alpha_1 - La(P_2W_{17})_2$     | -11.74 | -13.50 | CH <sub>3</sub> CN | Bu₄N⁺           |  |  |  |
| $\beta - La(P_2 W_{17})_2$       | -10.05 | -13.44 | CH,CN              | $Bu_4N^+$       |  |  |  |
| $\alpha_2 - P_2 W_{12} Mo^{(6)}$ | -11.9  | -12.6  | Н₂О                | H+              |  |  |  |
| $\alpha_2 - P_2 W_{17} Zn^{(7)}$ | -8.6   | -13.8  | H <sub>2</sub> O   | Li <sup>+</sup> |  |  |  |
| $\alpha_1 - P_2 W_{17}$          | -9.2   | -13.50 | H <sub>2</sub> O   | Li⁺,K⁺          |  |  |  |
| $\alpha_2 - P_2 W_{17}$          | -7.38  | -14.40 | H <sub>2</sub> O   | NH <sup>+</sup> |  |  |  |
| $\beta - P_2 W_{17}$             | -7.56  | -14.16 | H <sub>2</sub> O   | NH <sup>‡</sup> |  |  |  |
| $\alpha - P_2 W_{18}$            |        | -12.5  | H <sub>2</sub> O   | NH <sup>+</sup> |  |  |  |

\* from 85% H<sub>3</sub>PO<sub>4</sub>

二.IR 吸收光谱:  $Ln(\alpha_2-P_2W_{17})_2$ 的 IR 数据列于表 3、IR 光谱分别在约 1085、1054 和 1016cm<sup>-1</sup> 出现 P--O<sub>a</sub> 反对称伸缩振动,940cm<sup>-1</sup>,~915cm<sup>-1</sup> 和~800cm<sup>-1</sup> 出现 W-O<sub>d</sub>、W-O<sub>b</sub>-W 和 W-O<sub>c</sub>-W 反对称伸缩振动的 Wells-Dawson 结构特征吸收带.从表 3 可见, $v_{aqP-O}$ 和  $v_{artW-O_{c}}$ 几乎不随原子序数的不同而变化,因为 P-O 键处于杂多阴离子的内层,W-O<sub>d</sub> 键为独立伸缩 振动,Ln-O 键的生成对它们的影响很小.而 $v_{astW-O-W}$ 随原子序数的增加呈现波动性变化, 这也提供了 O<sub>b</sub>、O<sub>c</sub> 与 Ln<sup>3+</sup>键合的证据.

| Ln                 | V <sub>as</sub> (P – O <sub>e</sub> ) | <sup>V</sup> ы(₩ - 0 <sub>2</sub> ) | $V_{\rm LM}(W - O_{\rm b} - W)$ | $V_{\rm IM}(W-O_{\rm g}-W)$ |
|--------------------|---------------------------------------|-------------------------------------|---------------------------------|-----------------------------|
| La                 | 1085 1055 1016                        | 940                                 | 917                             | 820 769                     |
| Ce                 | 1085 1055                             | 940                                 | 915                             | 817 766                     |
| Рт                 | 1086 1054 1016                        | 940                                 | 914                             | 811 769                     |
| Nd                 | 1088 1057 -                           | 940                                 | 915                             | 771                         |
| Sm                 | 1085 1056 1016                        | 941                                 | 910                             | 821 769                     |
| Gd                 | 1085 1056 1023                        | 940                                 | 919                             | 819 772                     |
| Dy                 | 1085 1056 1026                        | 941                                 | 917                             | 824 772                     |
| $a_2 - P_2 W_{17}$ | 1083 1053 1013                        | 939                                 | 910                             | 800 734                     |

表 3  $Ln(\alpha_2 - P_2 W_{17})_2$ 的 IR 数据 (cm<sup>-1</sup>) Table 3 IR Spectral Data for  $Ln(\alpha_2 - P_3 W_{17})_2$  (cm<sup>-1</sup>)

三.紫外-可见吸收光谱  $Ln(\alpha_2-P_2W_{17})_2$  在紫外区出现一个吸收峰,峰位分别为: La, 195.0; Cc, 193.3; Pr, 195.0; Nd, 201.7; Sm, 204.2; Eu, 195.0; Gd, 198.3; Dy, 206.7nm. 均未出现饱和 Wells-Dawson 结构的 320nm 特征峰.  $Nd(\alpha_2-P_2W_{17})_2$  的可见光谱数据列于表 4, 与  $Nd(H_2O)_a^{3+}$  比较发生了红移,表明钨磷杂多配离子的配位场强度比 H<sub>2</sub>O 更弱. 在该配 合物中存在电子云伸展效应、根据 Jorgensen 所提出的方程  $\sigma_c - \sigma_{aq} = d\sigma - d\beta \cdot \sigma_{aq}^{(1)}$  ( $\sigma_c$  为配 合物可见吸收谱带,  $\sigma_{aq}$  为水合金属离子可见吸收谱带),用最小二乘法算得电子云伸展效应 参数的改变值 d<sup>β</sup> 为 0.34%,小于  $Nd(\alpha_1-P_2W_{17})_2$  的 d<sup>β</sup> (为 0.45%)<sup>(3)</sup>.表明其 Ln-O 键的 离子性强于  $\alpha_1$  异构体. 配体场强度  $\alpha_2 > \alpha_1$ .

| Table 4                           | Visible Spectra of $Nd(\alpha_2 - P_2W_{12})_2$ (Ground St | tate $I_{q/2}$ ,(KK) |
|-----------------------------------|------------------------------------------------------------|----------------------|
| excited state                     | $Nd(a_2 - P_2 W_{17})_2$                                   | Nd <sup>3+</sup>     |
| <sup>4</sup> F <sub>5/2</sub>     | 12.42                                                      | 12.50                |
| ${}^{4}F_{7/2}$ , ${}^{2}S_{3/2}$ | 13.39                                                      | 13.47                |
| <sup>4</sup> G <sub>5/2</sub>     | 17.22                                                      | 17.35                |
| <sup>4</sup> G <sub>1/2</sub>     | 19.20                                                      | 19.20                |
| <sup>4</sup> G <sub>9/2</sub>     | 19.61                                                      | 19.69                |
| ${}^{2}K_{15/2}$                  | 21.09                                                      | 21.29                |

表 4 Nd(α<sub>2</sub>-P<sub>2</sub>W<sub>17</sub>)<sub>2</sub>的可见光谱数据 (<sup>4</sup>I<sub>9/2</sub>),(KK)

四.极谱及循环伏安  $Ln(\alpha_2-P_2W_{17})_2$ 的极谱和循环伏安图与其母体化合物  $\alpha_2-P_2W_{17}$ 极为相 似,  $E_{1/2}$ 发生负移,氧化能力减弱.这是  $Ln(\alpha_2-P_2W_{17})_2$ 配离子负电荷增加的必然结果.不同 pH 值下的  $Ln(\alpha_2-P_2W_{17})_2$ 极谱测定表明,随着 pH 值的升高, $E_{1/2}$ 发生负移,说明当发生 W (V1)还原的同时有加合 H<sup>+</sup>的反应发生。由极谱对数分析求得参加反应的电子数 n 分别 为:波 I, n=1.08;波 II, n=1.06;波 II, n=0.62。第一步和第二步还原是一电子可逆还 原,第三步是不可逆还原。对于波 I 和波 II,由可逆反应的近似公式  $E_{1/2} = E^0 - \frac{0.059m}{n}$  pH可 求得参加反应的质子数 m.由 pH 对  $E_{1/2}$ 作图所得斜率求出 m=1。则对于波 I 和波 II,还原反应可表示为

$$Ln(\alpha_2 - P_2 W_{17} O_{61})_2^{17} + c + H^+ \rightarrow HLn(\alpha_2 - P_2 W_{17} O_{61})_2^{17}$$

另外,从极谱数据中并没有得到希土元素四分族效应的可观察到的结果。

循环伏安(数据见表.5)和不同扫描速率下的循环伏安表明,第二波的  $i_{Pa}$  /  $i_{Pc}$ =1,不随扫描速率的改变而变化,且  $\Delta E_p$ =60,也不随扫描速率变化,说明第二波是可逆性单电子的 W (V1) →W (V) 还原波,而第三波的可逆性较差。与极谱对数分析得的结果一致。

| Ln                      |                 | wave I      |                              |             | wave II                  |                              |             | wave III    |                              |
|-------------------------|-----------------|-------------|------------------------------|-------------|--------------------------|------------------------------|-------------|-------------|------------------------------|
|                         | $E_{\rm Pa}(V)$ | $E_{Pc}(V)$ | $\Delta E_{\rm P}({\rm mV})$ | $E_{Pa}(V)$ | $E_{\rm Pc}({\rm V})$    | $\Delta E_{\rm P}({\rm mV})$ | $E_{Pa}(V)$ | $E_{Pc}(V)$ | $\Delta E_{\rm P}({\rm mV})$ |
| La                      | -0.596          | -0.642      | 46                           | -0.702      | -0.766                   | 64                           | -0.882      | -0.990      | 108                          |
| Cc                      | -0.594          | -0.636      | 42                           | -0.714      | -0.766                   | 52                           | -0.886      | -0.990      | 104                          |
| Pr                      | -0.602          | 0.646       | 44                           | -0.722      | <ul><li>→0.776</li></ul> | 54                           | -0.894      | -0.996      | 102                          |
| Nd                      | -0.596          | -0.642      | 50                           | 0.714       | -0.774                   | 60                           | -0.890      | -0.994      | 104                          |
| Sm                      | -0.596          | -0.642      | 46                           | -0.718      | -0.774                   | 56                           | -0.896      | -1.002      | 106                          |
| Eu                      | -0.590          | -0.634      | 44                           | -0.714      | -0.766                   | 52                           | -0.870      | -0.982      | 112                          |
| Gđ                      | -0.590          | -0.636      | 46                           | -0.718      | -0.770                   | 52                           | -0.896      | -1.002      | 106                          |
| Dy                      | -0.590          | -0.634      | 44                           | -0.714      | 0.766                    | 52                           | -0.896      | -0.994      | 98                           |
| $\alpha_2 - P_2 W_{17}$ | -0.546          | -0.586      | 40                           | -0.658      | -0.714                   | 56.                          | -0.866      | -0.990      | 124                          |
|                         |                 |             |                              |             |                          |                              |             |             |                              |

表 5  $Ln(\alpha_2-P_2W_{17})_2$ 的循环伏安数据<sup>•</sup> Table 5 Electrochemical Parameters Obtained from the Cyclic Voltammograms of  $Ln(\alpha_2-P_2W_{17})_2^*$ 

\* pH = 5.76,  $1mol \cdot dm^{-3}HAc-NaAc-NaNO_3$ 

五.磁化率 以 La( $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>)<sub>2</sub> 作为反磁性校正,测得 Pr( $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>)<sub>2</sub> 的磁化率  $X_g$ =0.4658×10<sup>6</sup>e.m.u/g,有效磁矩 3.69B.M.,与 Van Vleck 方程所给出的计算值 3.62B.M.极接近。 六.稳定性 以 Pr( $\alpha_2$ -P<sub>2</sub>W<sub>17</sub>)<sub>2</sub> 为例,进行了热谱测定。热重和差热分析表明,72℃出现结晶水 失重的吸热峰; 332℃出现 NH<sup>4</sup> 失重的放热峰;杂多阴离子热分解温度为 552℃。

#### 参考文献

- [1] Peacock, R.D., Weakley, T.J.R., J.Chem. Soc., (A) 1836; 1937(1971).
- [2] Qu Lunyu, Wang Shougou, Peng Jun, Chen Yaguang, Wang Guang, Polyhedron, 12, 3290(1992).
- [3] Qu Lunyu, Wang Shougou, Peng Jun, Chen Yaguang, Yu Ming, 科学通报, 21, 1955(1992).
- [4] 吴志芸,中国希土学报, 4(2), 25(1984).
- [5] Malik, S.A., Weakley, T.J.R., Chemical Communications, 1094(1967).
- [6] Rene, M., Roland, C., Jean-Marc, F., Jean-Pierre, C., Michel, F., Inorg. Chem., 16(11), 2916(1977).

[7] Jorris, T.L., Mariusz Kozik, Nieves Casan-Pastor et al., J.Am. Chem. Soc., 109, 7402(1987).

## **PREPARATION AND PROPERTIES OF THE LANTHANIDE** BIS $-\alpha_2-2:17$ TUNGSTOPHOSPHATES III.

Wang Shouguo Peng Jun Yu Ming Chen Yaguang Qu Lunyu (Department of Chemistry, Northeast Normal University, Changchun 130024) Wang Guang

(Measurement Centre, Northeast Normal University, Changchun 130024)

Eight pure isomers of the formula  $(NH_4)_{17} Ln(\alpha_2-P_2W_{17}O_{61})_2 \cdot xH_2O(Ln^{3+} = La, Ce, Pr, Nd, Sm, Eu, Gd, or Dy)$  were synthesized and characterized by <sup>31</sup>P NMR, IR and UV-Vis spectroscopy, polarography, cyclic voltammetry and their magnetic moments. The properties of  $\alpha_1$ ,  $\alpha_2$  and  $\beta$  isomers were compared. The ionic character of the Ln-O bonds in the  $\alpha_2$ -isomer is stronger than that in the  $\alpha_1$ -isomer.

Keywords: tungstophosphate lanthanide Wells-Dawson structure heteropolyacid