ニ氰基ニ硫纶・联吡啶镍(Ⅱ)、

铜(Ⅱ)、锌(Ⅱ)配合物的合成与表征

王守兴* 彭正合 秦子斌

(武汉大学化学系,武汉 430072)

以 cis-1,2-二氧基乙烯-1,2-二硫醇钠 Na₂(mnt)和 2,2′-联吡啶金属配合物 M(bpy)Cl₂ 为原料,合质 了标题配合物 M(mnt)(bpy), M=Ni(Ⅱ)、Cu(Ⅱ)、Zn(Ⅱ),并经元素分析、热谱、摩尔电导、红外和电 子光谱所表征. 三者均为四配位的电中性配合物,热分解温度高于 310℃,可溶于 DMF、DMSO、吡 啶、氯仿和丙酮,难溶于水和乙醚。

关键词: 二硫纶 联吡啶 镍 铜 锌

具有离域化 π 电子系统的 1,2-二硫纶(1,2-dithiolene)是一大类配位能力很强的双齿配体,其均配型金属配合物的研究十分活跃⁽¹⁾.该类配体和 α , α' -二亚胺混配型金属配合物的研究量起步较晚,但因其存在配体间的荷移跃迁(LL'CT)而具有比二硫纶均配金属配合物更优异的性能,故受到功能材料特别是分子材料及相关学科研究者的极大重视^(2,3)。本工作以 cis-1,2-二氟基乙烯-1,2-二硫醇钠 Na₂(mnt)和 2,2'-联吡啶金属配合物 M(bpy)Cl₂ 为原料,合成了一系列二硫纶和联吡啶金属配合物 M(mnt)(bpy),研究了它们的性质、结构和某些功能⁽³⁾,本文仅限于 Ni(II)、Cu(II)、Zn(II)配合物的合成与表征,其中只见 Ni(mnt)(bpy)有文献⁽⁴⁾简单报道。

实验部分

原料及试剂 Na₂(mnt)参照文献^(5,6) 合成,无水 NiCl₂、CuCl₂和 ZnCl₂由 AR 级带结晶水的 相应氯化物制得。2,2′-联吡啶及乙醇、乙醚、丙酮、DMF、DMSO、THF 均为 AR 级,仅 DMF 经 K₂CO₃ 干燥处理。

仪器及方法 碳、氢、氮用 Carlo Erba 1106 型元素自动分析仪测定,金属含量用 EDTA 滴定。热谱使用 DT-30B 型热分析仪(氮气保护). 红外吸收光谱用 Nicolet 170 SX 型和 60XB 型 FT 红外光谱仪(KBr、CsI 压片法)。电子吸收光谱用岛津 UV-240 型分光光度计。荧光谱用 日立 FR-5000 型和岛津 FR-540 型荧光光谱仪,所用溶剂经荧光预检测,对样品的荧光结果 无干扰。摩尔电导用 DDS-11A 型电导率仪测量。

原料 M(bpy)Cl₂ 的合成将 0.6784g(5.01mmol)无水 CuCl₂ 溶于约 10ml 热 DMF 并过滤,得 溶液 A;将 0.7816g(5.00mmol)联吡啶溶于约 5ml DMF 得 B. 在搅拌、加热下将 B 滴入 A

本文于1993年2月16日收到。

国家自然科学基金、配位化学国家重点实验室研究基金资助课题。

^{*}现在山东省枣庄师范专科学校工作、

10 卷

后,	搅拌、	回流 3	Omin,	再浓纳	宿至 5ml 许,	冷却,	析出明	暗绿色沉淀.	过滤、	纯化、	干	燥,	得
产物	Cu(bp	y)Cl ₂ .	Ni(bp	y)Cl ₂ ,	Zn(bpy)Cl ₂	按同法	合成。	三者经元素	分析(表	ŧ 1)、1	R,	UV	谱
等证	实,组	成符合	• M(C ₁₀	H_8N_2	Cl ₂ .								

表 1 M(bpy)Cl₂的元素分析结果(%,计算值按 M(C₁₀H₂N₂)Cl₂)

complex	С	Н	N	М
Ni(bpy)Cl ₂	41.89	3.08	9.69	19.96
	(42.02)	(2.82)	(9.80)	(20.54)
Cu(bpy)Cl ₂	41.11	2.89	9.49	21.44
	(41.34)	(2.78)	(9.64)	(21.86)
Zn(bpy)Cl ₂	40.81	2.87	9.48	21.98
	(41.07)	(2.76)	(9.58)	(22.34)

配合物 M(mnt)(bpy)的合成 将 1.2384g(4.26mmol)Cu(bpy)Cl₂、0.8012g(4.30mmol) Na₂(mnt) 分别溶于约 60ml 水中得 C 液和 D 液. 在室温、强烈搅拌下,将 D 滴入 C(有棕绿色沉淀生成),继续搅拌 lh,静置. 过滤,滤饼用水洗至不含 CI⁻后,用少量乙醇、乙醚分洗数次,于 P₂O₅ 上 100℃ 真空干燥 24h,得浅绿棕色细粉状产物 Cu(mnt)(bpy)1.51g,产率 98.5%(按 Cu(bpy)Cl, 计).

Ni(mnt)(bpy)红色,产率 98.5%; Zn(mnt)(bpy)橙黄色,产率 85.3%均按上法合成.三种 金属配合物 MLL'(L=mnt²⁻, L'=bpy,下同)均易溶于 DMF、DMSO、吡啶、苯腈、乙腈, 可溶于丙酮、氯仿、1,2-二氯乙烷、甲苯、THF,在甲醇、乙醇中溶解度较小,基本上不溶 于水和乙醚.

结果与讨论

配合物的组成及热谱 从表 2 可知 M(mnt)(bpy)的组成符合化学式 M(C₄N₂S₂)(C₁₀H₈N₂), M = Ni(II)、Cu(II)、Zn(II)。室温下三者 DMF 溶液的摩尔电导率依次为 7.13、5.60、 7.35 $\Omega^{-1} \cdot cm^{-1} \cdot mol^{-1}$,表明该类 MLL'为电中性配合物。MLL'的 DTA 曲线均呈现一中强或 较弱的放热峰(I),继之为一强放热峰(II),相应数据列在表 3 中。由 TG 分析得到与此对应 的 330-480 和 500-780℃二温区热失重率分别为约 38%和 41%。理论上推测,此二热效应可 能对应 MLL'的二步分解:第一步生成 M₄S₂(mnt)₂(bpy)₂,失去四氰基噻吩⁽⁶⁾、S 和 2bpy(36.5%-37.2%);第二步失去剩余的 mnt 和 bpy(40.9%-41.7%)。这表明 MLL'的起始热 分解温度高于 310℃,热稳定性按 Zn、Ni、Cu 次序递增。

表 2 MLL'的元素分析结果(%, 按 M(C4N2S2)(C10H8N2)计算)

$(70, \text{Calcu. Ior } M(C_4N_2S_2)(C_{10}H_8N_2))$						
complex	С	н	N	M		
Ni(mnt)(bpy)	47.21	2.44	15.64	16.38		
	(47.36)	(2.27)	(15.78)	(16.53)		
Cu(mnt)(bpy)	46.36	2.47	15.36	17.45		
	(46.72)	(2.24)	(15.57)	(17.66)		
Zn(mnt)(bpy)	46.60	2.39	15.48	17.96		
	(46.48)	(2.23)	(15.49)	(18.07)		

complex	I	П
Ni(mnt)(bpy)	375(312-406)	531(517-623)
Cu(mnt)(bpy)	383(357-449)	523(476-637)
Zn(mnt)(bpy)	351(311-423)	. 493(462-584)

表3 M(mnt)(bpy)的差热分析数据(放热峰, C)

红外光谱 从表 4 中配合物 MLL/及原料 Na₂(mnt)的红外特征吸收带可知, 配体 mnt²⁻以二硫 原子与金属配位. 自由 mnt²⁻的 $v_{C-C}(1155 \text{ cm}^{-1})$ 、 $\delta_{(C-CN)}(重心 518 \text{ cm}^{-1})$ 、 $\pi_{(C-CN)}(1109 \text{ cm}^{-1})$ 在 MLL/中的吸收频率或强度均有不同程度的减小,并按 Zn、Cu、Ni 次序递减,表明配位效应 使 C-CN 中的 C-C 键略有减弱, M^QS 键按 Zn、Cu、Ni 次序增强. mnt²⁻的 $v_{C-S}(862, 1117 \text{ cm}^{-1})$ 在 MLL/中强度明显减小、频率依上述金属次序增大; $v_{C=C}(1427 \text{ cm}^{-1})$ 及 1622、 1639 cm⁻¹)的频率因 bpy $v_{C=C}$ 、 $v_{C=N}$ 的迭加而变化较大,但均按 Zn、Cu、Ni 次序递增,表 明 M^{A-}L(mnt²⁻)共轭反馈键依次增强. 原料 M(bpy)Cl₂ 如 Cu(bpy)Cl₂ 中吡啶环伸缩、变形, 以及 v_{C-H} 、 δ_{C-H} ,在 MLL/中的频率均显著减小,表明因 M^{A-}L(mnt²⁻)的形成而降低了吡啶环 的电荷密度.

表 4 M(mnt)(bpy)及 Na2(mnt)和 Cu(bpy)Cl2 的红外吸收带(cm⁻¹)

Table 4	Intrared Absorptio	on Bands (cm	Joi the Compou	nas M(mnt)(opy)	1 Na ₂ (mm), Cu(opy)Ci ₂
Na ₂ L	CuL'Cl ₂	· NiLL'	CuLL'	ZnLL'	assignment
	3090m	3078m	3079m	3080m	ν _{C-H}
2194vs		2197s	2199s	2195s	^V C∎N
1639s	1621ms	1628w	1627w	1620w	n n
1622s	1612vs	1602s	1601s	1597s	C = C, $C = N$
	1484s	1472vs	1475vs	1465s	$v_{C=N}, v_{C=C}$
1427s	1457vs	1442vs	1440vs	1439vs	$v_{C=C}$, $v_{C=N}$
•	1326s	1316ms	1315ms	1313ms	def (ny ring)
	1257m	1243m	1246m	`1250m	der.(p) mg)
	1180ms	1165sh	1168sh	1165sh	
11558	1172s	1152s	1153s	1153s	*C-C> *C-S
1117vs		1125m	1122m	1119ms	ν _{C-S} , ν _{C-C}
1109ms		1109m	1109m	1109ms	$\pi_{(C-CN)}$
862s		861m	863m	858m	v _{C~S}
	790vs	763vs	762vs	765vs	\$
	743s	721ms	723vs	723ms	0С-н
521vs 498s		507m	512m	514m	δ _(C-CN)

溶液中的吸收光谱 通过对室温下多种溶剂中 MLL'的电子吸收光谱研究发现,金属离子对紫 外区光谱的影响不大. 从表 5 可知, MLL'谱带田本质上属于配体 mnt²⁻的 $\pi^b \rightarrow \pi^*$ 跃迁,带 IV、V同属于 bpy 和 mnt²⁻内部 $\pi^b \rightarrow \pi^*$ 跃迁的迭加,表明此三带的跃迁能级所含金属轨道成 分较少. 带田受金属离子的影响比带IV大,且随金属 d 电子的增多而增大.带 II 应属 HOMO(mnt²⁻为主体)到 bpy π^* 跃迁⁽²⁾,故可指定为配体 mnt²⁻到配体 bpy 的荷移跃迁 (LL'CT). 谱带 I 与 II 一样含有 LL'CT,但比后者具有更多的 M→L(L')荷移跃迁成分. Ni(mnt)(bpy)的带 I 及 Zn(mnt)(bpy)的带 I 分别只在某些介质中被明显观察到,证实了这种推 测.

表 5 M(mnt)(bpy)及其配体溶液的电子吸收光谱 λ_{max}(um)(lgc)

Table 5 Electronic Absorption Spectra of M(mnt)(bpy) and Ligands in Various Solvate, $\lambda_{max}(nm)(lge)$

coly	compd	т	Π	τπ	177	11
5014.	compa.	I			IV	· V
DMSO	NiLL'		480(3.51)	384(3.69)	296(4.36)	
					272(4.46)	
	CuLL'		490(3.48)	367(3.88)	282(4.39)	
					262(2.68)	
	ZnLL'		448(3.33)	366(4.18)	274(4.48)	
	Na ₂ L			382(4.11)	271(4.18)	
	bpy				282(4.19)	
DMF	NiLL'	850(2.0)	477(3.29)	400(3.34)	275(4.36)	
		680(2.30)		•		
	CuLL'		492(3.32)	366(3.89)	282(4.35)	
	ZnLL'		445(3.59)	379(4.17)	272(4.60)	
				360(4.26)		
	Na ₂ L			392(3.76)	266(3.59)	
				375sh		
	bpy				280(3.58)	
acet.	NiLL'	870(2.81)	476(3.54)	397(3.51)	327(3.89)	
	CuLL'		510(3.50)	357(3.77)	322(3.62)	
			495(3.51)			
	ZnLL'			390sh	320(3.68)	
				347(3.87)		
	Na ₂ L			378(3.97)	318(3.42)	
				460sh		
	ру				327(3.03)	
THF	NiLL'		496(3.49)	392(3.33)	293(4.29)	252(4.44)
				344sh		
	CuLL!		520(2.35)	362(3.52)	292(4.15)	240(4.09)
			486(2.65)			
	ZnLL'			346(3.88)	297(3.92)	244(4.03)
	Na ₂ L			380(3.91)	264(3.94)	240(3.94)
	bpy				287(4.00)	242(3.96)
					270(3.97)	

发射光谱 在室温和波长 220nm 光激发下,配合物粉末样品在 350-750nm 波长范围内呈现出 强度不等的 3 个荧光发射带,如表 6 所示。谱带田可指定为配体内 $\pi^b \leftarrow \pi^*$ 跃迁,带 I、田可 指定为 mnt²⁻ ← bpy 的荷移跃迁,配合物 DMSO 溶液,在紫外光激发下未检测到属于 MLL' 的明显发射;在 580nm 光激发下 NiLL'于 690nm 处呈现一带肩峰的较强发射:636、688、 755nm,强度比为 1.2:1.5:1。该发射带对应于固体发射带 I 和溶液中吸收带 I,结果与文 献⁽²⁾的相似。MI L/固体及部分溶液的发射光谱研究表明:发射带波长 λ_{nax} 受金属离子的影 响很小,但发射强度受金属离子影响很大。固体主发射带 II (重心 525nm)的强度按金属 Zn > > Ni > Cu 次序减小。

所合成的 3 种金属配合物 M(mnt)(bpy)详细的电子光谱及其荷移跃迁激发态性质,将另外报道.

表 6 室温下 M(mnt)(bpy)固体荧光光谱 $\lambda_{max}(nm)$ (强度为任意单位, $E_x = 220nm$)

Table 6 Fluorescent Spectra of M(mnt)(bpy) in the Solid State at Room Temperature,

complex	Π		Π		I	
NiLL'	364	396sh	468	492sh	530	730
	(31.5)		(15.0)		(11.4)	(4.0)
CuLL'	362	395sh	468	493sh	522	726
	(30.0)		(10.0)		(6.3)	(3.0)
ZnLL'	363	394sh	467	492sh	520	724
	(12.5)		(50.0)		(37.0)	(1.2)

 $\lambda_{max}(nm)$ (Intensity in Arbitrary Unit, $E_x = 220nm$)

参考文献

[1] Cassoux, P. et al., Coord. Chem. Rev., 110, 115(1991).

[2] Zuleta, J.A. et al., Inorg. Chem., 31, 2396(1992), Coord. Chem. Rev., 97, 47(1990).

[3] 王守兴,硕士学位论文,武汉大学,1991.

[4] Benedix, R. et al., Z. Anorg. Allg. Chem., 542, 102(1986).

[5] Bähr, G., Schleitzer, G., Chem. Ber., 88, 1771(1955).

[6] Simmons, H.E. et al., J. Am. Chem. Soc., 84, 4756, ibid., 4746.

SYNTHESIS AND CHARACTERIZATION

OF NICKEL(\blacksquare), COPPER(\blacksquare) AND ZINC(\blacksquare) COMPLEXES WITH DICYANODITHIOLENE AND BIPYRIDINE LIGANDS

Wang Shouxing Peng Zhenghe Qin Zibin (Department of Chemistry, Wuhan University, Wuhan 430072)

The title complexes M(mnt)(bpy), M = Ni(II), Cu(II), Zn(II), are synthesized by reaction of Na₂(mnt) with relevant $M(bpy)Cl_2$, respectively. The elemental analysis, IR, DTA-TG, and molar conductivities showed these complexes as having electroneutrality with approximate square planar structures. The M-S bond is slightly stronger than the M-N bond. They are themostable colour solid under temperature 310°C. The electronic spectra of the complexes in various solvate exhibited intensive absorption bands at 240-290nm (π - π^* in bpy and mnt), 340-400nm (π - π^* in mnt). And intensive absorption band at 420-500nm is assigned as a metal-dithiolene π to bpy π^* change-transfer transition. The absorptions for Ni(mnt)(bpy) at 650-880nm are observed also in lgs 2.0-3.0. At room temperature, under the excition of ultraviolet light the complexes all exhibit an intensive fluorscent emission at 520nm (in solid state) or at 600-800nm (in solution).

Keywords: dithiolene bipyridine nickel copper zinc