\$ 进展与评述^{\$}

Mo(W)-Cu(Ag)-S 原子簇化合物的研究现状

侯红卫 郎建平 李纪国 忻新泉* (南京大学化学系, 配位化学国家重点实验室, 210008)

本文在研究 Mo(W)-Cu(Ag)-S 原子簇化合物的低热固态合成化学基础上,详细地对该类簇合物进行了归纳,从中提出:

- 1. $MO_{4-n}S_n^{2-}$ (M = Mo, W; n = 2, 3, 4) 作为配体中心。
- 2. 氧原子在簇合物中仅作为端基,不参与同其他金属成键。
- 3. 单个 MS₄(M = Mo, W)基团最多只能键合六个 Cu(Ag)原子, 即最大核数为七。
- 4. 迄今为止所有 Mo(W)-Cu-S 原子簇化合物中 Cu 均为+1 价。
- 5. 预计含低价态 Mo(W)的这类簇合物将会有很大进展。

关键词: Mo(W)-Cu(Ag)-S 簇合物

前言

原子簇化合物是无机化学的边缘学科,它在理论和某些应用方面都处于化学学科的前沿,而 Mo(W)—Cu(Ag)—S 簇合物由于其结构的多样性、催化性能、生物活性及作为新型材料等重要应用前景格外引人注目。至今已报道的这类簇合物已有一百六十余个,它们大都是在液相合成。近年来,我们实验室开创了一种与众不同的低热固相合成方法,该方法简述如下:

将一定量的硫代钼酸盐(或硫代钨酸盐)和 Cu(Ag)的化合物及(n-Bu)₄NBr 或 PPh₃等混合研细,移入一反应管中,一般控温在 90℃左右,氨气保护下反应数小时,然后选择适当溶剂萃取,过滤,滤液上通常加入某种扩散剂(如异丙醇),放置数日,可得到簇合物的晶体。

此方法同液相和高温固相合成法相比,有几个明显的优点:

1. 能得到一些独特的簇合物,如:

$$(NH_4)_2MoS_4+CuCN+Bu_4NB_1\frac{95C}{N_2}[Bu_4N]_4[Cu_{12}Mo_8S_{32}]^{[1]}$$

2. 该方法也适用于配合物及其他类型化合物的合成。

$$(NH_4)_8[SiW_{11}O_{39}] \cdot 13H_2O + As_2O_3 + Bu_4NBr\frac{80C}{Ar}H_2[Bu_4N]_3[As(SiW_{11}O_{39})]^{[2]}$$

3. 同高温固相反应相比, 反应温度低, 甚至室温即可。

本文于1993年11月5日收到。

^{*} 通讯联系人。

- 4. 高温固相反应所得到的是三维或二维网状的无机聚合物结构^[4],而本方法所得到的产物结构接近于液相反应的产物。
- 5. 仪器简单,操作方便,反应周期短,速度快。本实验室用此方法已合成出近百个 Mo(W)-Cu(Ag)-S 簇合物,其中已解出五十余个晶体结构^[5]。

近年来,我们实验室较为详细的研究了温度等因素对固相成簇反应的影响;用电导,DSC及 DTA等手段探讨了固相反应机理;用IR,XRD和UV等方法证实了低温固相反应的可靠性。该方法缺点是产率低。

目前报道的 Mo(W)-Cu(Ag)-S 簇合物约有一百六十余个,国内外许多学者已有一些综述报道 $^{[5-8]}$ 。我们在对该类簇合物研究基础上,根据 Mo(W)在簇合物中的个数分为: 单 Mo(W)的簇合物,双 Mo(W)的簇合物和多 Mo(W)的簇合物。

Mo(W)-Cu(Ag)-S 原子簇化合物的结构分类

- 一. 单 Mo(W)和 Cu(Ag)形成的簇合物
 - 1. 双核[一个 Mo(W), 一个 Cu(Ag)]

 $MO_{4-n}S_n^{2-}(M=Mo, W; n=2, 3, 4)$ 上加一个 M'L 基团(M'=Cu, Ag)* 只形成一种线性结构(图 1),即 $MO_{4-n}S_n^{2-}$ 以双齿配体与 M'配体。这类化合物有[(CNCu)MoS₄]^{2-[9]},[Cu(SPh)MoS₄]²⁻,[Cu(S-C₆H₄-P-Me)MoS₄]²⁻,[(AgCN)MS₄]²⁻,[(CNCu)MOS₃]²⁻,[(PhSCu)MoO₂S₂]^{2-[10]},[NCSCuMoS₄]²⁻,[(σ -phen)CuMS₄]^{2-[7]},[MoO₂S₂Cu{(NH₂)₂CS}]^[11],[CNCuMoOS₃]²⁻ • 0.5H₂O,[NH₄CuMS₄]以及[-AgMS₄ • γ -MepyH-]_n,[-AgMoS₄ • α -MepyH-]_n^[12]。

2. 三核[一个 Mo(W), 二个 Cu(Ag)]

二个 M'L 加到 $MO_{4-0}S_n^{2-}$ 上有二种结构骨架,一种是 MS_4^{2-} 以四齿配体与二个 M'成键, M'-M-M'=180°, 骨架结构如图 2. 两个 M'星现出相同配位环境的簇合物 $[(o-phen)_2Cu_2MS_4]^{[7]}$, $[Cu_2Cl_2WS_4]^{2-[13]}$, $[Cu_2(SPh)_2MoS_4]^{2-}$, $[Cu_2(NCS)_2WS_4]^{2-[14]}$, $[Cu_2(C_6H_5CS_2)_2MoS_4]^{2-}$, $[Cu_2Br_2MoS_4]^{2-[8]}$, $[Cu_2(CN)_2MoS_4]^{2-[9]}$, $[(CN)_2Cu_2MS_4]^{2-}$ 中 H_2O , $[(PPh_3)_4$ Ag_2MS_4], $[(PMePh_2)_4Ag_2MS_4]^{[15]}$, $[py_2CuS_2MoS_2Cupy_2]^{[16]}$ 和 $[WS_4Cu_2(PPh_3)_4]$ 中 $Py_2CuS_2MoS_2Cupy_2$] $Py_2CuS_2MoS_2$ $Py_2CuS_2MoS_2$ $Py_2CuS_2MoS_2$ $Py_2CuS_2MoS_2$ $Py_2CuS_2MoS_2$ $Py_2CuS_2MoS_2$ Py_2CuS_2 Py_2CuS

第二类骨架结构如图 3,MOS₃²⁻以三齿配体与两个 M′成键,M′-M-M′~90°, 此类簇合物都含端基氧,有[MOS₃Cu₂(PPh₃)₃], [MOS₃Cu₂(PPh₃)₃] • 0.8CH₂Cl₂, [MOS₃Ag₂ (PPh₃)₃]^[19], [(PPh₃)₂MoOS₃AgCu(CN)]^{-[18]}, [(PhSCu)₂MOS₃]²⁻和[MOS₃(CuNCS)₂]^{2-[20]}.

3. 四核[一个 Mo(W), 三个 Cu(Ag)]

根据 M'键合到 $MO_{4-n}S_n^{2-}$ 的相对位置可分为三类骨架结构:

第一类是 MS₄ 以四齿配体与三个 M′配位,因此,此类簇合物没有端基氧或硫(见图 4),化合物有[Cu₃Cl₃(MS₄)]²⁻, [Cu₃Br₃(WS₄)]²⁻, [Cu₃I₃MoS₄]^{2-[10]}。用双齿配体也可得到此骨架簇合物: [MCu₃S₄(S₂CNEt₂)₃]^[21], [MoCu₃S₄(S₂CNC₅H₁₀)₃]²⁻ · DMF 和

^{*} 注: 以后若未加说明, M=Mo, W; M'=Cu, Ag; n=2, 3, 4

[Cu₃MS₄(dtcC₅H₁₀)₃]^{2-[22]}。而[NEt₄]₂[Cu₃(NCS)₃WS₄]^[23]是通过 Cu(μ₂-NCS)₂Cu 桥联成一维聚合物。[Cu₃MoS₄(PPh₃)₄CN] 中三个 Cu 原子呈现不对称配位。

第二类骨架结构为鸟巢状的缺顶类立方烷(图 5)。 簇合物都含 MOS₃ 基团,有 $[(ClCu)_3MOS_3]^{2-}$, $[(CuNCS)_3MOS_3]^{2-}$,后者在晶体中由于 $Cu(\mu_2-NCS)_2Cu$ 桥联成二聚物;簇合物 $[Cu_3S_3W(S_2COEt)(O)(PPh_3)_3]$,配体 S_2COEt 中一个 S 与二个 Cu 配位。另一个 S 与一个 Cu 配位。

在缺顶的类立方烷上再加入额外配体 X. 即形成第三类骨架结构闭合的类立方烷(图 6)。它们是低热固相合成的 [Cu₃WS₄Br](PPh₃)₃, [Cu₃MoS₄I](PPh₃)₃, [Ag₃WS₄Cl(PPh₃)₃]。 0.5P(S)Ph₃。 3H₂O, [Ag₃WS₄Br(PPh₃)₃]。 $H_2O^{[26]}$, [Ag₃MoS₄I(PPh₃)₃]^[25], [MoS₄Ag₃I₃Br]³⁻, [WS₄Ag₃Cl₄]^{3-[27]}, [MoOS₃Ag₃Br₄]³⁻, [WS₄Cu₃Br₄]³⁻, [MS₄Ag₃Br₄]³⁻, [MoOS₃Ag₃I₃Br]³⁻。液相合成的有[Cu₃MS₄Cl₄]^{3-[28]}, [Cu₃(PPh₃)₃BrMS₄], [Ag₃MS₄Cl(PPh₃)₃], [Cu₃MS₄Cl(PPh₃)₃], [MAg₃S₃Cl](O)(PPh₃)₃ [29], [(PPh₃)₃(Cu₃S₃MoBr)(O)] • 0.5CH₂Cl₂, [Cu₃(AsPh₃)₃ClMOS₃]^[7], [MCu₃S₃Br](O)(PPh₃)₃ 和[OMoCu₃(μ_3 —S)₃(μ_3 —Cl)(PPh₃)₃] • 2THF.

4. 五核[一个 Mo(W), 四个 Cu(Ag)]

根据目前所合成的五核簇合物结构模式, MS_4^2 都是以四齿配体与金属配位,有二种骨架构型。第一种是在上述四核类立方烷上再加一个 M'L 基团,形成多一个面的类立方烷(图 7)。 化合物有 $[MS_4Cu_4Cl_3]^{3-[8]}$,由于 CuCl 配位的位置不同,它可以形成三种异构体。

第二种骨架是"开式"结构,其中母核部分[MS₄Cu₄]的五个金属近似地处于同一平面(图 8)。有关簇合物可通过 Cu(μ_2 -Br)₂Cu 桥形成线性多聚体的[Cu₄Br₄MoS₄]^{2-[30]},通过 Cu(μ_2 -Cl)₂Cu 形成二聚体的[Cu₄Cl₄WS₄]^{2-[31]},二维聚合物[Cu₄(SCN)₄MoS₄]^{2-[32]},三维聚合物 [Cu₄(SCN)₄WS₄]^{2-[23]},及 [py₄Cu₄(SCN)₂MS₄], [(γ -pic)₄Cu₄(SCN)₂MS₄], [Cu₄Br₄WS₄]²⁻和 [Cu₄Cl₄MoS₄]²⁻。仅有一个簇合物[Cu₄(SCN)₅WS₄]^{3-[23]},SCN 不对称的键合到 Cu 原子上,形成无限的直链。本实验室还合成了一系列"开式"结构的中性簇合物[MS₄Cu₄X₂L₆](X=Cl₅Br,I,CN,SCN;L=py, γ -Mepy),另外还有低热固相反应合成的[NEt₄]₄[MS₄Cu₄I₆]和 [W₆O₁₉][WS₄Cu₄(γ -Mepy)]。

5. 六核[一个 Mo(W); 五个 Cu(Ag)]

仅有一种骨架结构即双立方烷结构(如图 9),此结构的簇合物有[$Cu_sCl_7MS_a$] $^{4-[33,34]}$ 和低热固相反应合成的[$Cu_sBr_7WS_a$] $^{4-[35]}$ 。

6. 七核[一个 Mo(W), 六个 Cu(Ag)]

七核簇合物骨架结构可视为 MS_4 四面体被 Cu_6 八面体包围而成的八面体簇骼(图 10)。 化合物 有 $[Cu_6Cl_9MoS_4]^{5-[36]}$,低热固相反应合成的有 $[-MS_4Cu_6Br_4(py)_4-]_n$ 和 $[-WS_4Cu_6I_4\ (py)_4-]_n$ 。从骨架结构可看出, MS_4^{2-} 中六个 S-S 边都已配位金属,且每个 S 与三个 S 公和一个 S 成键,已不可能再配位另外的金属,因此,七核簇合物代表了单个 S 数的最大核数。

图 1 Fig.1

图 2 Fig.2

图 3 Fig.3

图 9 Fig.9

图 10 Fig.10

二. 含二个 Mo(W)的 Mo(W)—Cu(Ag)—S 簇合物

1. 三核[二个 Mo(W), 一个 Cu(Ag)]

2. 四核[二个 Mo(W), 二个 Cu(Ag)]

此类簇合物具有类立方烷的骨架结构(图 12)。簇合物有 $[M_2Cu_2S_4(SCH_2CH_2S)_2](PPh_3)_2^{[38]}$, $[Mo_2Ag_2S_4](TDT)_2(PPh_3)_2$ 和 $[Cp_2Mo_2Cu_2Cl_2S_4]^{[39]}$ 。二个 M 和 M'分别处于立方体的四个交叉 顶点,其中 M 的表观氧化态是+5 价。

3. 五核[二个 Mo(W), 三个 Cu(Ag)]

 $[Bu_4N]_2[M_2Ag_3(\mu_3-S)_2(\mu-S)_4S_2Et_2dtc]$ 和 $[Bu_4N]_2[W_2Ag_3S_8(C_6H_5CSS)]^{[40]}$ 是仅有的几个五核化合物,骨架结构见(图 13)。五个金属原子形成一个五员环,二个硫原子在五员环内分别与三个金属配位,四个硫作为四个 M—Ag 的桥基,另二个硫原子作为端基键合于二个 M 上。

4. 六核[二个 Mo(W), 四个 Cu(Ag)]

骨架结构为闭式的双立方烷(如图 14). 二个 M 原子都有端基硫或氧原子。化合物为 [Ag₄W₂S₈](PPh₂Me)₄, [Ag₄M₂S₈](PPh₃)₄^[41,42], [(MS₄)₂Cu₄(S₂CNC₄H₈)₂]²⁻, [Cu₄M₂S₆O₂ (PPh₃)₄]^[43], [Cu₄M₂S₆{P(C₇H₇)₃}₄O₂]和[Ċu₄M₂S₆(PPh₂Me)₄O₂].

5. 七核[二个 Mo(W), 五个 Cu(Ag)]

将二个有缺陷的立方单元[YMS₃Cu₂]和[YMS₃Cu₃](Y=S, O)桥联就形成了一系列七核簇合物(图 15)。有[M₂Cu₅S₆(Et₂NCS)₃O₂]²⁻, [M₂Cu₅S₆(Me₂dtc)₃]²⁻, [Mo₂Cu₅S₆O₂(SCNEt₂)₃]²⁻ • DMF,[M₂Cu₅S₆O₂(Me₂dtc)₃]^{2-[44]}等化合物。

6. 八核[二个 Mo(W), 六个 Cu(Ag)]

二个类立方单元[OMM' $_3$ S $_3$]通过 M'一配体键连结在一起,就形成了含二个 Mo(W)的八核 簇合物,这里的配体是包含硫的有机配体,且为三齿配体。骨架结构(如图 16)。簇合物有 [Mo $_2$ Cu $_6$ S $_6$ (SCH $_2$ CH $_2$ OH) $_2$ (O) $_2$ (PPh $_3$) $_4$]^[45],[Cu $_6$ S $_6$ W $_2$ (SCMe $_3$) $_2$ (O) $_2$ (PPh $_3$) $_4$]^[24]及[Mo $_2$ Ag $_6$ S $_6$ (SCMe $_3$) $_2$ (O) $_2$ (PPh $_3$) $_4$]^[19]。

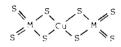


图 11 Fig.11

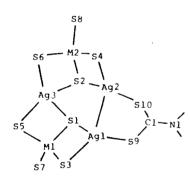


图 13 Fig.13

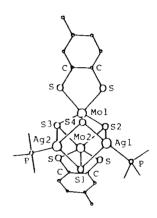


图 12 Fig.12

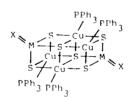
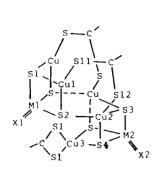



图 14 Fig.14

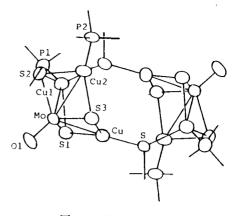


图 15 Fig.15

图 16 Fig.16

三. 含多个 Mo(W)的 Mo(W)-Cu(Ag)-S 簇合物

1. 三个 Mo(W)的 Mo(W)-Cu(Ag)-S 簇合物

此类化合物仅有类立方烷[M₃CuS₄]骨架的四核簇合物: $\{W_3CuS_4[S_2P(OC_2H_5)_2]_3(I)(\mu-CH_3COO)(C_5H_5N)\}$, $\{Mo_3CuS_4[S_2P(OEt)_2]_3(I)(\mu-CH_3COO)(DMF)\}$ 和 $\{Mo_3CuS_4[S_2P(OC_2H_5)_2]_3(I)(\mu-CCI_3COO)(CH_3CN)\}^{[46]}$, M 的表观氧化态为+5 价。 骨架结构见(图 17).

2. 六个 Mo(W)的 Mo(W)-Cu(Ag)-S 簇合物

六个 Mo 和两个 Cu 原子形成的八核簇合物是由两个 Mo₃Cu 结合而成的双类立方烷结构。化合物是[(H_2O)₉Mo₃S₄CuCuS₄Mo₃(H_2O)₉]($CH_3C_6H_5SO_3$)₈ · 12 H_2O ^[47]见(图 18)。Mo 的表观氧化态为 11 / 3,配位数为 6。

第二个化合物是由六个 Mo 和六个 Cu 原子形成的十二核簇合物[Et₂N]₂[(μ_6 -S)Cu₆S₆(S₂)₆ Mo₆O₆](DMF)^[48](如图 19). Mo 的表观氧化态为+5 价,配位数为 4,簇阳离子中心含有一个 μ_6 -S 原子,它被 6 个 Cu 原子以变形八面体所包围。

3. 八个 Mo(W)的 Mo(W)—Cu(Ag)—S 簇合物

通过低热固相反应方法,合成了目前 Mo(W)—Cu(Ag)—S 类化合物的最大核数二十核簇合物[Bu_4N]。 $_4[Mo_8Cu_{12}S_{32}]$,结构(如图 20)。其簇核可以认为是二十个金属原子有秩序的排列成类立方的金属笼,八个 Mo 原子位于立方体的八个顶点,十二个 Cu 原子位于十二条边的中点。Mo 的表观氧化态为+6 价,金属原子通过 μ_2 –S, μ_3 –S 和 μ_4 –S 连接起来。

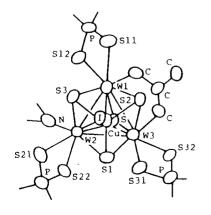


图 17 Fig.17

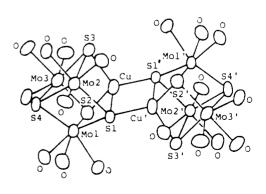
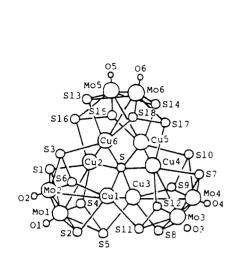



图 18 Fig.18

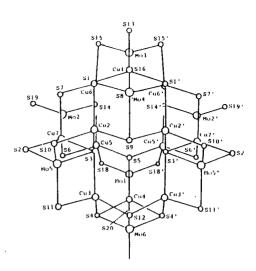


图 19 Fig.19

图 20 Fig.20

通过以上对 Mo(W)-Cu(Ag)-S 原子簇化合物的总结, 从中可得出几点启示:

- 1. 配位化合物中金属离子或原子为配位中心接受配体,而在 Mo(W)—Cu(Ag)—S 簇合物中,以 $MO_{4-1}S_{2}^{2-}$ 作为配体中心,通过硫桥与 Cu(Ag)配位。
 - 2. MO4-0Sn 基团中,氧原子只作为端基,不参与同其他金属配位。
- 3. 每个 MS_4 基团有六个 S-S 边,每条边上只能结合一个 Cu(Ag)原子,因此六个 Cu(Ag)原子就使 MS_4 达到饱和,不能再直接结合另外的金属,即单个 MS_4 基团形成的簇合物最大核数为七。
- 4. 含 $MO_{4-n}S_n^{2-}$ 基团的化合物中 M 的表观氧化态为+6 价,配位数为 4. 已知的+6 价 M 的 Mo(W)-Cu(Ag)-S 簇合物只有二核一八核及具有很完整构型的二十核,而九核一十九核以及二十核以上的簇合物还未见报道过。使用 $MO_{4-n}S_n^{2-}$ 为原料合成新骨架结构估计很难进展,若能把含硫的有机配体加入到簇合物中去是条很好的思路。

含低价态 Mo(W)的 Mo(W)-Cu(Ag)-S 簇合物中 Mo(W)的配位数可高于 4. 因此,使用低价态的 Mo(W)代替+6 价的 Mo(W),有可能合成更多的新骨架结构的化合物。目前,已报道的含低价态 Mo(W)的簇合物有三核如[Mo₂AgS₄(S₂C₂H₄)₂(PPh₃)]- · CH₂Cl₂ [37],四核如 [Cp₂Mo₂Cu₂Cl₂S₄]^[39],五核如[W₂Ag₃S₈(C₆H₅CSS)]^{2-[40]},八核[(H₂O)₉Mo₃S₄CuCuS₄Mo₃ (H₂O)₉](CH₃C₆H₅SO₃)₈ · 12H₂O^[47]及十二核[(μ_6 -S)Cu₆S₆(S₂)₆Mo₆O₆]²⁻ · DMF^[48]。其中五核和十二核具有独特的结构。预计含低价态 Mo(W)的 Mo(W)-Cu(Ag)-S 簇合物将会有新的进展。

参考 文献

- [1] Li Jiguo, Xin Xinquan, Zhou Zhongyuan, Yu Kaibei, J. Chem. Soc., Chem. Commun., 250(1991).
- [2] Lang J.P., Xin X.Q., J. Solid State Chem., 39, 4, 2, 349(1994).
- [3] 郎建平、鲍时安、忻新泉、蔡进华、康北笙, 高等学校化学学报, 14, 750(1993).
- [4] Chevrel, R., Segernt, M., Prigent, J., J. Solid State Chem., 3, 515(1971).

- [5] Xin, X. Q., Lang, J. P., Yu, K. B., Zhou, Z. Y., Chen, M. Q., Zheng, P. J., Cai, J. H., Kang, B. S., J. Inorg. Chem., 8(4), 472(1992).
- [6] Muller, A., Diemann, E., Jostes, R., Bogge, H., Angew. Chem. Ent. Ed. Engl., 20, 934(1981).
- [7] Sarkar, S., Mishra, S. B. S., Coord. Chem. Rev., 59, 239(1984).
- [8] Jeannin, Y., Secheresse, F., Bernes, S., Robert, F., Inorg. Chem. Acta, 198-200, 493(1992).
- [9] Muller, A., Dartmann, M., Romer, C., Clegg, W., Sheldrick, G. M., Angew. Chem. Int. Ed. Engl., 20, 1060(1981).
- [10] Minelli, M., Enemark, J. H., Nicholson, J. R., Garner, C. D., Inorg. Chem., 23, 4384(1984).
- [11] Lin Chichang, Zheng Zishan, J. Struct. Chem., 8(1), 50(1989).
- [12] Lang, J. P., Bao, S. A., Xin, X. Q., Yu, K. B., Polyhedron, 12, 801(1993).
- [13] Secheresse, F., Salis, M., Potvin, C., Maroll, J. M., Inorg. Chem. Acta, 114, 19(1986).
- [14] Potvin, C., Maroll, J. M., Secheresse, F., Marzak, S., Inorg. Chem., 26, 4370(1987).
- [15] Stalick, J. K., Sielde, A. R., Mighell, A. D., Hubbard, C. R., J. Am. Chem. Soc., 101, 2903(1979).
- [16] 金祥林、汤卡罗、童 亮、唐有祺, 中国科学, 11, 1136(1986).
- [17] Muller, A., Bogge, H., Tolle, H. G., Jostes, R., Shimanski, U., Dartmann, M., Angew. Chem. Int. Ed. Engl., 19, 654(1980).
- [18] Du, S. W., Zhu, N. Y., Chen, P. C., Wu, X. T., Lu, J. X., J. Chem. Soc., Dalton Trans., 339(1992).
- [19] Du, S. W., Zhu, N. Y., Chen, P. C., Wu, X. T., Polyhedron, 19, 2489(1992).
- [20] Beheshti, A., Garner, C. D., J. Sci. Islamic. Repub. Iran., 1(4), 270(1990).
- [21] Liu, J. N., Lei, X. J., Kang, B. S., Huang, Z. Y., Hong, M. C., J. Struct. Chem., 10(3), 196(1991).
- [22] Huang, Z. Y., Lei, X. J., Liu, J. N., Kang, B. S., Liu, Q. T., Hong, M. C., Liu, H. Q., Inorg. Chim. Acta, 169, 25(1990).
- [23] Manoli, J. M., Potvin, C., Secheresse, F., Marzak, S., Inorg. Chim. Acta, 150, 257(1988).
- [24] Du, S. W., Zhu, N. Y., Chen, P. C., Wu, X. T., Angew. Chem. Int. Ed. Engl., 8, 1085(1992).
- [25] Lang, J. P., Bao, S.A., Zhu, H. Z., Xin, X. Q., Yu, K. B., Chin. J. Chem., 11(2), 126(1993).
- [26] Lang, J. P., Zhu, H. Z., Xin, X. Q., Yu, K. B., Zhou, Z. Y., J. Struct. Chem., 11(4), 274(1992).
- [27] Lang, J. P., Bao, S. A., Zhu, H. Z., Xin, X. Q., Cai, J. H., Kang, B. S., Chin. J. Chem., 11(5),(1993).
- [28] Jeannin, Y., Secheresse, F., Bernes, S., Robert, F., Inorg. Chim. Acta. 69, 5(1983).
- [29] Wu, J. H., Zhu, N. Y., Du, S. W., Wu, X. T., Lu, J. X., Polyhedron, 11, 1201(1992).
- [30] Nicholson, J. R., Elood, A. C., Garner, C. D., Clegg, W., J. Chem. Soc., Chem. Commun., 1179(1983).
- [31] Secheresse, F., Bernes, S., Robert, F., Jeannin, Y., J. Chem. Soc., Dalton Trans., 2875(1991).
- [32] Manoli, J. M., Potvin, C., Secheresse, F., Marzak, S., J. Chem. Soc., Chem. Commun., 1557(1986).
- [33] Secheresse, F., Robert, F., Marzak, S., Manoli, J. M., Potvin, C., Inorg. Chim. Acta, 182, 221(1991).
- [34] Secheresse, F., Manoli, J. M., Potvin, C., Marzak, S., J. Chem. Soc., Dalton Trans., 3055(1988).

- [35] Lang, J.P., Zhou, W. Y., Xin, X. Q., Cai, J. H., Kang, B.S., Yu, K. B., *Polyhedron*, 12, 1647(1993).
- [36] Bernes, S., Secheresse, F., Jeannin, Y., Inorg. Chim. Acta, 191, 11(1991).
- [37] Zhu, N. Y., Wu, X. T., Lu, J. X., J. Chem. Soc., Chem. Commun., 235(1991).
- [38] Zhu, N. Y., Zheng, Y. F., Wu, X. T., J. Chem. Soc., Chem. Commun., 780(1990).
- [39] Henri, B., Roland, G., Joachim, W., Bernd, N., J. Organomet. Chem., 393(1), 119(1990).
- [40] 金祥林、倪海洪、汤卡罗、唐有祺, 高等学校化学学报, 6, 724(1992).
- [41] Muller, A., Bogger, H., Koniger-Ahlborn, E., Hellmenn, W., Inorg. Chem., 18, 2301(1979).
- [42] Muller, A., Bogge, H., Koniger-Ahlbron, E., J. Chem. Soc., Chem. Commun., 739(1978).
- [43] Muller, A., Bogge, H., Hwang, T., Inorg. Chim. Acta, 39, 73(1980).
- [44] Liu, H. Q., Cao, R., Lei, X. J., Wu, D. X., Wei, G. W., Huang, Z. Y., Hong, M. C., Kang. B. S., J. Chem. Soc., Dalton Trans., 1023(1990).
- [45] Du, S. W., Zhu, N. Y., Chen, P. C., Wu, X. T., Polyhedron, 19, 2495(1992).
- [46] Zhan, H. Q., Zheng, Y. F., Wu, X. T., Lu, J. X., J. Struct. Chem., 7(2), 157(1988).
- [47] Shibahara, T., Akashi, H., Kuroya, H., J. Am. Chem. Soc., 110, 3313(1988).
- [48] Wu, X. T., Wang, B., Zheng, Y. F., Lu, J. X., J. Struct. Chem., 7(1), 47(1988).

STUDIES OF Mo(W)-Cu(Ag)-S CLUSTER COMPOUNDS

Hou Hongwei Lang Jianping Li Jiguo Xin Xinquan (Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008)

On the basis of studying the low-heating solid state synthesis of Mo(W)-Cu(Ag)-S cluster compounds, we systematically classify this kind of clusters and propose several suggestions, which might be useful for further research.

- 1. In Mo(W)-Cu(Ag)-S clusters, MO₄₋₈S₂-can be regarded as coordination center.
- 2. Oxygen atoms only act as terminal group.
- 3. Single MS₄ moiety can form dinuclear, trinuclear, tetranuclear, pentanuclear, hexanuclear, heptanuclear step by step when it coordinates with Cu(Ag) atoms.
- 4. Using lower valence Mo(W), we may synthesize new framework clusters with higher nuclearity.

Keywords: Mo(W)-Cu(Ag)-S cluster