助熔剂 NaCl-CdCl₂ 对 CdS:Cu, In 结晶 状态作用规律研究

崔东林 高胜利*

(西北大学化学系,西安 710069)

发现在确定的热处理温度和时间下,随炉料中助熔剂 NaCl-CdCl。总含量的增加, CdS: Cu, In 多晶 的粒度分布变窄,数均粒径具有最大值,晶粒外型趋于规整且表面平滑。进而证明,多晶的结晶状态对其 光电性能具有显著的影响。

关键词: 多晶体 助熔剂 光敏硫化镉

80 年代以来,为制备光电性能优良和抗湿能力强的光敏 CdS,使用了用高比例助熔剂(助熔剂 NaCl-CdCl₂:基质 CdS>1:4)法^[1,2]. 但都缺乏有关助熔剂对光敏 CdS 结晶状态作用的系统研究.本文研究了在确定的热处理温度和时间下,CdS:Cu,In 多晶的粒度分布、数均粒径、晶型、晶粒外型及其表面状态与炉料(基质 CdS、助熔剂 NaCl-CdCl₂ 和施主-受主杂质的混合物)中的助熔剂 NaCl-CdCl₂ 含量的关系,并且研究了多晶的结晶状态对其光电性能的影响,得到了一些有意义的结果。

CdS: Cu, In 多晶样品的制备

一、主要试剂

CdS、 高纯(陕西秦阳化工厂); 其余试剂均为优级纯(西安化学试剂厂).

二、仪器

热处理设备为 ZnKL 型自动控温单管扩散炉(北京半导体设备厂); GXL-201A 型粒度测试 仪(丹东仪表研究所); 日本理学 D/max-ⅢC X-射线仪, 管压 20kV, 管流 5mA, CuKa 靶; S-570 扫描电子显微镜(日本); NP 感光鼓光电性能测定仪(日本佳能公司).

三、多晶体制备条件

每次热处理炉料 50 克. 基质 CdS 中约 72%粒子直径为 0.15~0.40μm, 六方晶型为 37% 左右; 炉料中 NaCl-CdCl₂ 含量为 0~40%, NaCl:CdCl₂=0.10~6.25; Cu²⁺和 In³⁺的含量均 为 100μg・g⁻¹(相对于 CdS); 一次热处理温度 480~600℃, 时间 25~60min; 二次热处理温度 450℃, 时间 60min; 热处理物用二次蒸馏水(电导率 1×10⁻⁶S・m⁻¹)洗至滤出液的电导率<0.1

收稿日期: 1994-11-29.

原国家机械委员会七五计划重点项目.

• 通讯联系人。

第一作者: 崔东林, 男, 56岁, 副教授, 研究方向: 无机光敏及发光多晶材料研究。

mS·m⁻¹,再烘干,过400 日筛. 代表样品 I[#]、Ⅱ[#]、Ⅲ[#]均为530℃下进行30min 一次热处理而 得,其中 I[#]样的炉料中无助熔剂,Ⅱ[#]含5.5%, NaCl:CdCl₂=0.17,Ⅲ[#]含22.5%, NaCl: CdCl₂=0.17.

CdS:Cu,In 的结晶状态和光电性能测试

一、CdS:Cu,In的结晶状态

Table 1

1. 粒度分布 表 1 为样品的粒度分布测定结果,由表 1 可知, I[#]样最大和最小晶粒的直径 比为 22.7, Ⅱ[#]为 13.0, Ⅲ[#]为 5.6. 这说明随炉料中助熔剂 NaCl-CdCl₂ 含量的增大, CdS: Cu, In 多晶的粒度分布逐渐变窄,且数均粒径变小.在其他确定条件下(热处理温度和时间及 NaCl 与 CdCl₂ 的比例)制得的 CdS: Cu, In 多晶体的粒度分布与炉料中助熔剂 NaCl-CdCl₂ 含量的关系也具有同样的规律.

$D_{j} - D_{j+1}(\mu m)$	d <i>F</i> (%)			
	T#	Π#	Π#	
1.54-2.00	· · · · · · · · · · · · · · · · · · ·	21.95		
1 55-2.00	32.61			
1.60+2.00			16.32	
2.003.00	37.64	23.67	37.92	
3.00-4.00	14.73	15.44	24.27	
4.00-5 00	6.51	11.38	14.23	
5.00-6.00	3.29	8.37	5.32	
6.00-7.00	1.82	6.08	1.49	
7.00-8.00	1.07	4.30	0.42	
8 00-9.00	0.67	2.98	0.01	
9.00-10.00	0.45	2.60		
10.00-12.00	0.52	2.22		
12 00-14.00	0.27	0.98	i	
14.00-16.00	0.15	0.42	1 4	
16.00-18.00	0.10	0.16	1	
18.00-20.00	0.07	0.06		
20.00-30.00	0.04	•		
30.00-35.17	0.01		·	
	$D_n = 2.98 \mu\text{m}$	$D_{\rm n}=4.12(\mu{\rm m})$	$D_{n} = 3.13(\mu m)$	

表 I CdS: Cu·In 的粒度分布比较

Comparison of Grain Size Distribution for Cd: Cu · In

* D_n —number average of grains; $D_1 - D_{p+1}$ —diameter inteval; dF_1 (%)—ratio of the number of grains in a certain diameter interval to the total

2. 数均粒径

粒度测试结果表明,在确定条件下(热处理温度和时间以及 NaCl 与 CdCl₂ 的比值),随炉 料中助熔剂 NaCl-CdCl₂ 总含量的变化,CdS:Cu,In 多晶的数均粒径具有最大值。即多晶的 数均粒径随助熔剂含量增大到一定的值后便开始下降。图 1 是在 530℃下对助熔剂含量不同的 炉料进行 30min 热处理制得的多晶的数均粒径与助熔剂含量的关系图。其中曲线 1 和 2 分别 代表 NaCl 和 CdCl₂ 的比值为 0.17 和 6.25。比较两条曲线还可以看出,当炉料中助熔剂的总 含量不变时,提高其中熔点较高助熔剂 NaCl 的比例,多晶的数均粒径相应地减小。

图 2 是 I[#]、 II[#]、 II[#]样品的 X-粉末衍射图.对照图 2 和 JCPDS 卡片中的 6-314 卡知, 三个样品的晶型均为六方晶系,空间群为 $P6_3mc$.但是, I[#]样的衍射图中出现了杂峰且峰的背 景较高(图 3).分析确定杂峰为 CdO.峰背景高说明 I[#]样中含有一定数量的无定型 CdS.另 外,在 JCPDS 卡中,六方晶系 CdS 衍射图的最强峰为 101 衍射,但 II [#]样的衍射图的最强峰却 是 002 衍射,004 衍射也明显增强.这说明 II [#]样的晶粒沿 c 轴择优生长,晶粒外型呈长条状. 上述情况表明,在本实验条件下, NaCl-CdCl₂对 CdS 晶型的转化(β + α)无明显影响.但在炉 料中无助熔剂时,由于空气中的氧气对 CdS 的氧化作用,得不到单一的 CdS:Cu, In 物相.

4. 晶粒外型及其表面状态

观测发现 I[#]样晶粒无固定形状且表面十分粗糙, 图 4 中的 I[#]是其中的一个类型, Ⅱ[#]的 晶粒也是无固定形状, 但其表面缺陷却是显著减少.另外, Ⅱ[#]的 300 个晶粒的平均长宽比较大 (约为 1.4), 这与 X-射线分析结果是一致的.Ⅲ[#]的晶粒外型比较规整且表面平滑, 如图 4 中 Ⅲ[#]所示, 其晶粒的平均长宽比约为 1.1.上述情况表明, 随炉料中助熔剂含量的增大, 多晶的晶 粒外型趋于规整且表面平滑.

图 4 助熔剂含量不同时的 CdS: Cu. In 的电镜照片

Fig. 4 Electromicrography of CdS: Cu • In under condition of different content of fulx

二、CdS:Cu, In 的光电性能与其结晶状态的关系

将三个样品分别与楽苯乙烯丙烯酸甲酯丁酯和甲苯混合均匀, 浸涂在铝筒外表面(感光层厚 45~48μm 左右), 再做一些其他处理制成 NP 静电复印感光鼓.在同样条件下测定其光电性能, 结果汇于表 2. 表中数据表明, Ⅲ[#]样的光电性能最佳.

表 2 CdS: Cu, In 感光鼓光电性能指标对比

Table 2 Comparison of Photoelectrical Performance for CdS: Cu, In Photosensitizing Drums

number of photosensi- tizing drums	number CdS:Cu, In	ν _{DO} (V)	$V_{DO} - V_{LO}$ (V)	<i>V</i> _D (%)	status of copying patterns
1	I #	70	140	40	not clear
2	П#	120	270	65	clearer
3	Π#	510	340	95	clearest

* V_{DO} —initial surface potential of photosensitizing drum in dark field; V_{LO} —initial surface potential in bright field of drum; $V_{DO}-V_{LO}$ —photosensibility of drum; $V_D(\%)$ —ratio of the dark area surface potential of a newly made sensitizing drum after having been immersed in water for 24h(1 period) at (23 ± 1) °C to that before immersion

一、关于 CdS: Cu, In 多晶形成机理的探讨

根据上述测试结果与实验观察,对 CdS: Cu, In 多晶的形成机理作如下试探性的描述。

1. 助熔剂 NaCl-CdCl₂ 和基质 CdS 组成多相分散体系。前者为分散介质,后者为分散 相。微量有益杂质 Cu²⁺和 In³⁺对多晶的结晶状态无显著影响,可不作考虑。

2. CdS 微粒优先吸附体系中的 Cd²⁺离子而带正电荷,并且在其与混合盐的界面,可能也存 在着类似于电解质水溶液中胶体微粒与溶液界面的扩散双电层。

3. 在本实验的热处理温度下, NaCl--CdCl₂ 可变为熔融体. CdS 不熔化, 但粗大且结构疏 松的粒子, 在助熔剂和其他 CdS 粒子的撞击下解体为较小的微粒. 当两个相互移近的 CdS 微 粒的相对动能大于它们之间的斥力位能时, 却聚结为较大的粒子. 如此继续下去, 便长大为本 实验条件所容许的 CdS: Cu, In 多晶粒子. 在此过程中, Cu 以 Cu⁺和 In 以 In³⁺的形式逐渐进 入 CdS 点阵并取代 Cd³⁺离子.

4. 助熔剂熔体的共价性越强以及与 CdS 微粒电荷相反的助熔剂离子的价数越高, 越有利于 CdS: Cu, In 多晶的生长。

二、对实验结果的解释

1. 图 1 显示, CdS: Cu, In 多晶的数均粒径与 NaCl-CdCl₂ 含量的关系曲线呈峰形, 而且 当助熔剂总比例不变时, 加大 CdCl₂ / NaCl 的比值, 多晶的生长速度加快.这是由于高温下, 熔 融助熔剂具有降低体系摩擦阻力的作用, 有利于 CdS 微粒相互移近和聚结.因此, 多晶的数均 粒径随助熔剂含量的提高而增大。但是当助熔剂的含量提高到一定的数值时, 由于 CdS 微粒穿 过助熔剂层所需时间增长, 多晶的生长速度便缓慢下来.根据文献[3]关于简单氯化物熔体共价 性的判据—元素的电负性差值 Δx 小与电荷一半径比和Σ(Z / r_k)大的化合物形成分子熔体计算, CdCl₂ 比 NaCl 熔体的共价性强.共价性强的化合物熔点低,易熔化,有利于降低体系阻 力,加快 CdS 微粒碰撞聚结.因此,固定助熔剂的总比例而加大 CdCl₂ / NaCl 的比值时,多 晶的生长速度变快.

2. 在 NaCl-CdCl₂ 含量较高的体系中,不仅物质分布和温度分布较易保持均匀,而且多晶的生长速率也比较缓慢。因此,可制得粒度较小和粒度分布较窄(表 1 之Ⅲ[#]样)、外形比较规则 且表面平整(图 4 之Ⅲ[#]样)的 CdS:Cu, In 多晶。用这种多晶材料制得的感光元件(表 2 之Ⅲ[#] 示)的光电性能比较好。这是由于表面缺陷少的晶粒吸附的杂质(如助熔剂等)比较少,因而对环 境变化的稳定性高。另外,用粒度均匀和外形规则的多晶制造的感光元件的光敏层的缺陷比较 小,因而析象力好。

本文仅对助熔剂 NaCl-CdCl₂ 对 CdS:Cu, In 结晶状态的作用规律进行了探讨.它们是 否适用于其他体系, 是一个值得进一步研究的课题.

参考文献

[1] Hisamara, Masabumi, JPN. Xokai TOKKYO JP'%, 133, 454.

[2] 山本亚津子, 特开, 昭 59-148062.

[3] 段淑贞、乔芝郁,熔盐化学一原理和应用,北京,冶金工业出版社,P3(1990).

STUDY OF EFFECT OF NaCl-CdCl₂ FLUX ON CRYSTALLINE

STATE OF POLYCRYSTALLINE CdS: Cu, In

Cui Donglin Gao Shengli

(Department of Chemistry, Northwest University, Xian 710069)

In this paper effect of mixed flux $NaCl-CdCl_2$ on crystalline state of the polycrystal of CdS: Cu, In has been studied and conclusions drawn from this are as follows.

1) With increasing content of $NaCl-CdCl_2$ flux in oven charge the crystal grain size distribution of CdS: Cu, In polycrystal narrows gradually, numerical average diameter of grains changes and shows a maximum, shapes of grain tend to regular state and surfaces smooth under condition of fixing other factors.

2) The good crystalline state is one of important reasons which CdS: Cu, In polycrystal has better photoelectrical properties and is moisture-resistant.

Keywords: polycrystal flux photosensitive cadmium sulfide