氧缺位的磁铁矿型化合物转化 CO2 成 C 的研究

张春雷* 吴通好 杨洪茂 姜玉子

(吉林大学化学系,长春 130023)

(中国科学院山西煤炭化学研究所,太原 030001)

在高温(923K)下分解 FeC Ω_4 制备了阳离子缺位的磁铁矿(Fe $\Omega_{4+\delta}$, 0 δ 1),并用 H₂ 还原 使它变为氧缺位的磁铁矿(Fe $\Omega_{4-\delta}$, 0< δ 1)。在 623K 下研究了氧缺位磁铁矿对 CO₂ 分解成 C 的反应性能,发现 CO₂ 几乎 100% 地转化成 C, CO₂ 中的氧以 O²⁻形式被磁铁矿的氧缺位捕获,变 成化学计量的 Fe Ω_4 。XRD、M ssbauer 谱及热失重和化学分析表明, H₂ 还原磁铁矿的时间愈长, 缺氧程度愈大,分解 CO₂ 的活性愈高, Fe $\Omega_{4-\delta}$ Fe Ω (0< δ 1)和 α Fe 是 CO₂ 分解的活性相。

关键词: CO₂转化 氧缺位 磁铁矿 炭

CO₂ 是造成地球"温室效应"的元凶,随着现代工业的发展,CO₂ 排放量增大,地球气温升高,自然环境日益恶化;在宇宙飞船的太空舱内,宇航员要吸入O₂ 和呼出 CO₂,必须及时清除 CO₂。为了保护环境和维持宇宙飞船的生命系统,研究 CO₂ 的转化是很有意义的。

CO₂ 的还原已被大量研究人员使用化学的,物理的及生物的方法进行了广泛研究,但CO₂ 转化成C的研究极少。Bosch 反应^[1,2]是将CO₂和H₂通入到Fe上在700~1000 K下反应, CO₂分解效率小于30%,且有大量CO和CH₄生成,铁转变成了氧化物。Tamaura等^[3~6]研究 方铁矿及氧缺位铁酸盐上CO₂的分解发现,CO₂能高效地转化成C。本文经草酸亚铁的高温焙 烧制备了磁铁矿,考查了还原时间对磁铁矿氧缺位程度及其分解CO₂活性的影响,提出了 Fe₃O_{4 &} Fe₂O (0< δ 1)和 α -Fe 是分解CO₂的活性相。

实验部分

一.磁铁矿的制备及 CO₂ 分解反应

在 463K 下真空干燥 FeC $\Omega_4 \cdot 2H_{20}$ 10 h, 在Ar 气吹扫下升温至 923K 且烧 10 h, 降至室 温, 在空气中放置两天则得到阳离子缺位的磁铁矿。 取 20 g 该样品装入 0.5 L 密闭无梯度反 应器中, 用 40 mL /m in H₂ 于 623K 下还原活化制备氧缺位磁铁矿。 切换成高纯N₂ 吹扫 10 m in, 真空处理 20 m in, 通入 CO₂ 至 1.013 × 10⁵ Pa 进行分解反应。内压力由真空压力表测定, 气体种类由 SP-2305 型气相色谱检测。磁铁矿上沉积的炭由元素分析仪 (Perk in Elmer 2400 CHN)测定。

彭少逸

^{*} 收稿日期: 1995-03-22。

 ^{*} 通讯联系人。
第一作者:张春雷,男,27岁,博士,研究方向:多相催化。

二.磁铁矿的表征及氧缺位测定

用Rigaku P/MAX-IIIA 型X 射线衍射仪测定样品物相, 以标准硅为内标, 收集 FeiO4的 八条强峰,经最小二乘法求晶格常数。用 AC-01 型加速穆斯保尔谱仪,α-Fe 标定,测定物相及 组成。在 Perkin Elmer TGA 7型热分析仪上于 623 K 下定温还原 TG 曲线, 据失重量计算缺 氧量。用浓HC1溶解样品后,以二苯胺磺酸钠为指示剂,用K2CrO7和SnCl2-K2CrO7滴定 Fe²⁺ 及总 Fe 量. 根据它们计算磁铁矿样品的化学组成和缺氧量。

与 讨 论 结 果

一.磁铁矿样品的物相分析

FeC 20 4 在 923 K 下Ar 气流中分解制得的样品的 XRD 谱(图 1A)中,出现了 & Fe, Fe 20 和 Fe₃O_{4+ δ}($0 < \delta < 1$)的特征峰, 但尖晶石结构的 Fe₃O_{4+ δ}衍射峰比 Fe₃O 和 α -Fe 强得多, 说明 原始磁铁矿的主要成分是 Fe-O 4+ 。 原样的M ossbauer 谱(图 2A) 经拟合为四组谱线, 内磁场 H 为 485.7 和 455.5 kOe 的两组六线谱为亚铁磁性的 FeaO 4+ 8的 A 位(四面体)和 B 位(八面 体) 谱线, H 为 332.0 kOe 的一组六线谱是 & Fe 产生的, Fe O 为单线谱。从表 1 可知, Fe O 4 δ 此, 原始磁铁矿是由大量的 Fe₃O₄₊ ₆和少量的 & Fe₄ Fe₄O 组成的, 这与 Jette 和 Foote^[7]的研究 结果一致。他们认为, FeC A 4 在高于 843K 下将分解成方铁矿, 且方铁矿 FeA 在 843K 以下不 稳定,分解为FesO4和&Fes一部分小颗粒的FesO4和Feo在空气中室温下放置过程中,必然 被氧化而生成阳离子缺位的磁铁矿 Fe₃O_{4+ δ}($0 < \delta < 1$)^[8]。

衣! 🗯 🗰 🗛 🗛 🗛 🗛 🕹 🗛 🗠 🗛	0 > 0)
------------------------	-------	---

m agnetite sam p le s	composition of crystal phase	IS (mm/s)	QS (mm/s)	Hi (kOe)	coordination center	Fe (%)
befo re	Fe ₃ O 4+ δ	0 42	0.13	485.7	tetrahedral	26 51
reduction		0.85	0.08	455.5	octahedral	54.67
	Fe	1. 32	0 21	-	octahedral	17.10
	α- Fe	0.07	- 0.25	332 0	-	1.70
reduction	Fe3O 4- δ	0.48	0.10	481.6	tetrahedral	24.59
3h		0.87	0 07	452 4	octahedral	58 40
	α- Fe	0.08	- 0.29	334.2	-	17.01
after reaction	Fe ₃ O ₄	0.34	0 03	488 9	tetrahedral	30 13
on magnetite of		0.71	0 07	457.1	octahedral	58 87
reduction 3h	Fe ₃ C	0.26	- 0.03	209.8	-	11.00

Table 1 Parameter of the M ssbauer Spectra for the Magnetite Samples $(1 > \delta > 0)$

图 1 磁铁矿样品的 XRD 谱

Fig. 1 XRD patterns of the magnetite A. before reduction; B. reduction 3h; C. after reaction on magnetite of reduction 3h

Fe₃O_{4± δ} \clubsuit Fe₄O \Downarrow α -Fe (δ 0)

当通入H₂ 还原样品 80 m in 时, XRD 谱 中所有衍射峰强度均变化不大, 还原 3 h 时 (图 IB)Fe₃O₄₊ δ 的谱峰显著减弱, α -Fe 的峰明 显增强, Fe₄O 消失。说明还原 80 m in 以前, H₂ 的作用主要是夺走了 Fe₃O₄₊ δ 中的晶格O²⁺, 使其产生氧缺位(Fe₃O₄₊ δ 增大还原时间, H₂ 进一步剥夺O²⁺, 一方面使 Fe₃O₄ δ 氧缺位更 大, 另一方面使氧缺位的 Fe₃O₄ δ 和 Fe₄O 还原 为 α -Fe, 还原 3 h 时 α -Fe 的量已由还原前的 1.7% 增大到了 17% (表 1)。

往还原后的样品上通入 CO_2 反应至活性 显著降低后, XRD 谱中 Fe₄O 和 α -Fe 的衍射 峰已基本消失, 而尖晶石物相的峰却比还原前 稍强(图 1C), 且出现了明显的 Fe₃C 峰。此时 M ssbauer 谱已检测不到 α -Fe 和 Fe₄O 的存 在(图 2B), 但可拟合为三组六线谱, 即 Fe₃O₄ 的A 位和B 位及 Fe₃C 各一组(表 1), Fe₃O₄ 和 Fe₃C 各约占总铁的 89% (A 位 30.13, B 位 58.87)和 11%。以上分析表明, α -Fe₄ Fe₄O 和 Fe₃O₄ 。参的能分解 CO₂。

二 磁铁矿样品的化学组成及晶格常数分析

表 2 给出了 H₂ 还原不同时间下在空气和 N₂ 中放置 48 h 的样品的晶体常数和化学组 成。组成 1 是根据化学分析测得的 Fe²⁺ /Fe[&] 计算出的结果,由于HC1溶解磁铁矿过程中 α -Fe 和 FeO 也以 Fe²⁺ 形式存在,故组成 1 不是 Fe₃O₄ δ 氧缺位程度的真实情况,而反映的是 样品还原成 α -Fe 和 FeO 的程度。组成 2 是从 化学分析测得的 Fe²⁺ 量中扣除 α -Fe 和 FeO

的部分 Fe^{2+} (M ssbauer 谱测得的 α -Fe 和 FeO 量) 后计算得到的, 它如实地反映出了 $Fe_{O} 4-\delta$ 的氧缺位程度。实验中发现, En_2 中放置的样品, 其组成 2 与热失重分析测得的失重量计算出 的化学组成相当^[4]。

表 2 在不同氢气还原时间下空气和 N 2 中放置 48 h 的磁铁矿样品的晶格常数和化学组成

Table 2Lattice Constants and Chem ical Compositions of the M agnetite Rested in A ir and N 2 Gas for48 h under D ifferent H 2 Reduction T in es

		A ir		N 2		
magnetite sample	lattice	chem ical composition		lattice chemical composi		omposition
	constant (nm)	1*	2* *	constant (nm)	1*	2**
before reduction	0 83910	Fe3O 4- 0 201	Fe3O 4+ 0 119			
reduction 40m in	0 83930	Fe3O 4- 0 311	Fe3O 4+ 0 114	0 84102	Fe3O 4- 0 332	Fe3O 4- 0 132
reduction 80m in	0 83952	Fe3O 4- 0 452	Fe3O 4+ 0 108	0 84325	Fe3O 4- 0 558	Fe3O 4- 0 175
reduction 120m in	0 83955	Fe3O 4- 0 663	Fe3O 4+ 0 106	0 84346	Fe3O 4- 0 750	Fe3O 4- 0 178
reduction 180m in	0 83958	Fe3O 4- 0 852	Fe3O 4+ 0 106	0 84350	Fe3O 4- 0 982	Fe3O 4- 0 178
after reaction	0 83906	Fe3O 4+ 0 113	Fe3O 4+ 0 121	0 83968	Fe3O 4- 0 05	Fe3O 4

原始样品组成为 $Fe_{3}O_{4\pm 0,119}$ (表 2). 显然氧是过量的。还原 80 m in 时,组成 2 为 Fe₃O_{4-0.175}, δ值由 0.119 变为-0.175. 说明 H2 主要用于使 FeaO 4+ 0.119 产 生氧缺位。进一步增加还原时间, δ 值基本 上不再变化, Fe₃O₄ δ 最大氧缺位程度为 δ = - 0, 178。 氧缺位程度再大, 由于晶格膨 胀; 将导致 Fe₃O₄ 0 178 分解, 故 Fe₃O₄ δ的 氧缺位是有一定限度的。对于结构和组成 元素相同的化合物(如 Fe₃O_{4±}⁶均具有尖 晶石结构),氧的缺位必然引起晶格缺陷, 导致晶格膨胀,晶格常数增大。氧缺位程 度越大, 晶格常数越大。N₂ 气中放置的样 $B_{1}H_{2}$ 还原 80 m in 前晶格常数变化很大, 由还原前的 0.83910 nm 变为 0.84325 nm, 比化学计量的 Fe₃O₄ 的 0.83967 nm 大^[4]。再增大还原时间, 晶格常数几乎不

再变化, 与氧缺位程度变化一致。由于 α-Fe 和 Fe₄O 对组成 1 存在影响, 在 Fe₃O $_{4-\delta}$ 完全还原为 α-Fe 之前, δ 值是随还原时间的增加而增大的, 且始终比组成 2 大。

空气中放置的样品, 晶格常数和组成 1 中的 δ 均比N₂ 中放置的样品为小, 且组成 2 中 δ 为正值(表 2), 表明空气中放置后磁铁矿的氧是过量的, 可能是空气中的氧填补了氧缺位, 且 粒度< 1 μ m 的 Fe₃O₄ 充分氧化造成的。因此 Fe₃O₄ δ 在空气中是不稳定的, 只能存在于惰性气体中。

Fe₃O₄ ₅分解 CO₂ 后保存于N₂ 中的样品的晶格常数为 0.83968 nm, 与化学计量的 Fe₃O₄ (0.83967 nm)接近, 说明 Fe₃O₄ ₅捕获了 CO₂ 中的O²⁻ 而变成了 Fe₃O₄。而空气中保存的样品 晶格常数为 0.83906 nm, 氧过量 0.121。反应后在N₂ 和空气中的样品, 组成 1 与组成 2 均很接 近, δ 值差别较小, 这是由于反应后 α -Fe 和 FeO 几乎消失之故。可见 α -Fe, FeO 和 FeO 4 δ 均 是 CO 2 分解的活性相。

- 图 3 在还原前磁铁矿上 623 K 下反应时 CO₂(A)、 CO (B)和内压力(C)与时间的关系曲线
- Fig 3 Decrease in $P \varpi_2$ (A), $P \varpi$ (B) and inner pressure (C) as a function of time for the reaction between CO₂ and magnetite (before reduction) at 623 K

三.CO2分解活性及其与H2还原时间的关系

图 3 曲线A、B 为原始磁铁矿上 CO_2 和 CO 分压随时间的变化规律。在前 30 m in 内 CO_2 分压下降极快(仅剩下约 30% 的 CO_2), 之 后变缓,5h后剩余量约为15%。CO在30min 时达极大值 35%,之后减少,5 h 时约为 1%。 反应过程中内总压力不断减小,最后变成真 空, CO 与 CO₂ 分压之和与内压力相当, 气相 色谱也仅检测到了 CO 和 CO $_2$ 两种气体, 说明 内部气体是由 CO 和 CO $_2$ 组成的。从表 3 可 知,随着H2还原时间的增加,磁铁矿氧缺位程 度增大,在 623 K 下 95% 的 0.5 L CO2转化成 C 的时间越短, 原始样品需 5 h, 还原 180 m in 的样品只需 20 m in, 而且每克磁铁矿样品失活 前所分解的 CO_2 量(即单位磁铁矿分解能力) 也随还原时间增加而增大。以上分析表明,反 应初期有部分CO2转化成CO.但最终又都转 化成了C, 氧被以O²⁻形式转移给了磁铁矿. 填 补了FeaO4 的氧缺位和使 & Fea Fea 氧化。C 的元素分析表明,磁铁矿表面上沉积的炭略小

于反应体系内的 C 量(初始 CO $_2$ 中的 C 量),这是由于反应中有一部分活性的 C 与 α -Fe 作用 生成了 Fe₃C,如果把元素分析测得的炭量加上M ssbauer 谱测得的 Fe₃C 量,则正好与初始 CO $_2$ 中的 C 量相当,表明反应后体系变成真空,不是由无 CO $_2$ 或 CO 被吸附引起的。

表 3	个回 H ₂	还原时间的样品上	CO2 的分解活性

Table 3 Decomposition	Activity of CO ₂ on	the M ag	pnetite Sample at D	ifferent H ₂	Reduction Time
reduction time (min)	0	40	80	120	180
_decomposition time*	5h	2h	1h	40 m in	20 m in

* This is the time necessary for decomposing 95% of the initial $CO_2(0.5 L)$.

因此,磁铁矿样品缺氧程度越大,分解CO2的能力越强。实验发现,H2还原时间越长的样品,反应期间生成的CO量越少。原始样品CO极大值为35%,还原3h的样品,CO极大值约为5%。这可能是由于还原时间较长的样品活性很高,作为反应中间体的CO,很快又进一步转化为C,以至于检测的CO量较少。

四.结论

 CO_2 在氧缺位磁铁矿上几乎 100% 地转化为C_o H₂ 还原磁铁矿时间越长, 磁铁矿缺氧程度 越大, 分解 CO_2 的活性越高, 分解量越大。反应后磁铁矿转化为化学计量的磁铁矿 $Fe_{3}O_{4}$ 和少 量的 $Fe_{3}C_{o}$ & Fe₄ $Fe_{4}O$ 和氧缺位的 $Fe_{3}O_{4}$ δ 是 CO_{2} 分解成 C 的活性物质。

第 12 卷

参考文献

- [1] Sacco, A., Reid, R. C., Carbon, 17, 459(1979).
- [2] Lee, M., Lee, J., Chang, C., J. Chem. Eng. Jpn., 23, 130(1990).
- [3] Kodama, T., Tominaga, K., Tabata, M., Yosida, T., Tamaura, Y., J. Am. Ceram. Soc., 75 (5), 1287(1992).
- [4] Tamaura, Y., Tabata, M., Nature, 346, 255(1990).
- [5] Tabata, M., Nishida, Y., Kodama, T. et al, J. Mater. Sci., 28, 971 (1993).
- [6] A kanuma, K., Nishizawa, T., Kodama, T. et al, J. Mater. Sci., 28, 860(1993).
- [7] Jette, E. R., Foote, F., J. Chan. Phys., 1, 29(1933).
- [8] Katsura, T., Tamaura, Y., Bull Chen. Soc. Jpn., 52, 92(1979).

STUD IES ON THE CONVERSION OF CARBON D D X D E INTO CARBON OVER THE OXY GEN-DEFICIENT MAGNET ITE

Zhang Chunlei Wu Tonghao Yang Hongmao Jiang Yuzi

(Department of Chemistry, Jilin University, Changchun 130023)

Peng Shaoyi

(Institute of Coal Chemistry, Chinese A cadeny of Sciences Shanxi, Taiyuan 030001)

A cation-deficient magnetite (Fe₃O₄ δ , 0< δ < 1) was prepared at high temperature 923 K by decomposing FeC₂O₄ and then transformed into an oxygen-deficient magnetite (Fe₃O₄ δ , 0< δ < 1) through H₂ reduction. The activity of decomposing carbon dioxide into carbon with oxygen-deficient magnetite was studied at temperature 623 K. It is found that carbon dioxide can be nearly completely (100%) transformed into carbon and the oxygen in carbon dioxide is captured in the form of O²⁻ by the magnetite A s a result of reaction, the oxygen-deficient magnetite is converted to the stoichiometric Fe₃O₄. The results of XRD, M ssbauer spectra, therm al and chemical analyses show that the longer the time that cationdeficient magnetite is reduced by H₂ is, the higher the oxygen-deficiency degree of magnetite and the activity of its decomposing carbon dioxide are α -Fe, Fe₃O and Fe₃O₄. δ (0< δ < 1) are all the active phases of decomposing carbon dioxide

Keywords conversion of carbon dioxide oxygen-deficiency magnetite carbon