长链烷基锂与 6, 6-二烷基富烯的反应研究 ——取代茂钛、锆化合物的合成

贺峥杰* 杨德育 周大炜 陈寿山 (南开大学元素有机化学研究所,天津 300071)

郑庆惠 刘玉龙

(安徽大学应用化学研究所,合肥 230039)

研究了正庚基锂、正辛基锂同 6,6-二烷基富烯反应的立体和溶剂效应对反应类型的影响。在弱极性溶剂中(方法 A,B),正庚基锂、正辛基锂同 6,6-二烷基富烯主要发生加成反应;在极性溶剂中(方法 C),则倾向于加成和还原两种反应。利用上述反应形成的环戊二烯基阴离子同TiCl₄、ZrCl₄反应,合成了一系列新的取代茂钛、锆化合物。

关键词: 正庚基锂 正辛基锂 富烯 取代茂金属化合物

6,6-二烷基富烯与有机锂试剂反应是合成含或不含手性碳的叔取代茂金属化合物的 便利方法^[14],该反应类型不仅受富烯6-位取代基立体位阻及构象的影响,且与有机锂的 结构及反应介质密切相关。我们曾报道了一些烷基锂试剂与6,6-二烷基富烯的反应,发现 反应较为复杂^[1,2,4]。为了进一步探讨烷基锂与6,6-二烷基富烯反应的规律性,同时合成新 型取代茂金属化合物,本文研究了长链的正庚基锂、正辛基锂与6,6-二烷基富烯及6,6-多 亚甲基富烯反应的立体效应,同时考察了溶剂对反应的影响。利用反应产生的取代环戊二 烯基锂与TiCl₄、ZrCl₄配位,合成出十八个新的取代茂钛、锆化合物。

实验部分

实验在氮气保护下进行,溶剂均经除水、重蒸。富烯、正庚基锂、正辛基锂按文献[5,6]制备。¹H NMR 谱用FX-90Q 型仪测定,溶剂CDCl₃,内标TMS。熔点测试时温度计未经校正。

一.正庚基锂、正辛基锂与6,6-二烷基富烯反应

将 0. 03 mol 6, 6-二烷基富烯或 6, 6-多亚甲基富烯分别与 20 ml 四氢呋喃(方法 A), 20 ml 正戊烷(方法 B), 20 ml 乙醚(方法 C) 配成溶液, 在室温搅拌下, 于 20 min 内将前二 者分别滴加到 80-90 ml(0.03 mol) 正庚基锂或正辛基锂的正戊烷悬浮液中, 后者滴加到 80-90 ml(0.03 mol) 正庚基锂或正辛基锂乙醚溶液中, 然后继续搅拌 30 min, 得取代环戊 二烯基锂。

按方法 A, 6, 6-二甲基, 6-甲基-6-乙基, 6-甲基-6-正丙基, 6-甲基-6-异丁基和 6, 6-五亚

* 收稿日期: 1995-07-01。

国家自然科学基金资助项目。

* 通讯联系人。

第一作者: 贺峥杰, 男, 29岁, 讲师; 研究方向: 金属有机及有机磷化学。

第12卷

甲基富烯分别与正庚基锂、正辛基锂反应、得锂试剂 $a \sim e \pi f \sim i_o$

$$R = C_{7}H_{15} - n,$$

a, R¹ = R² = CH₃; **b**, R¹ = CH₃, R² = C₂H₅;
c, R¹ = CH₃, R² = C₃H₇-n; **d**, R¹ = CH₃, R² = C₄H₉-*i*; **e**, R¹R² = (CH₂) s;
R = C₈H₁₇-n,
f, R¹ = R² = CH₃; **g**, R¹ = CH₃, R² = C₂H₅;
h, R¹ = CH₃, R² = C₃H₇-n; **i**, R¹ = CH₃, R² = C₄H₉-*i*; **j**, R¹R² = (CH₂) s;
6, 6-四亚甲基富烯分别同正庚基锂和正辛基锂反应, 得同一锂试剂 **k**₆

按方法 B, 6, 6-二甲基, 6-甲基-6-乙基, 6-甲基-6-正丙基, 6-甲基-6-异丁基富烯分别与 正辛基锂反应, 同样制得加成产物 f ~ i; 按方法 C, 6-甲基-6-正丙基富烯和 6-甲基-6-异丁 基富烯分别与正辛基锂作用, 得锂试剂 h 和 i, 6, 6-二乙基富烯与正辛基锂反应, 则得还原 产物 l。

二.取代茂钛、锆化合物的合成

表 1 化合物(η^{r} -C₅H₄CRR¹R²)₂MCl₂ 的物理常数及分析数据

Table 1 Physical Properties and Analytical Data of Compounds (17-C3H4CRR¹R²) 2MCl 2

compd.	М	R	\mathbf{R}^1	\mathbb{R}^2	state	m. p.	yield*	elementary analysis found(calcd.)		
							%	С%	Н%	Cl%
1	Ti	C_7H_{15} - <i>n</i>	CH ₃	CH_3	red solid	118-120	22.6	68. 22(68. 05)	9.41(9.52)	13.51(13.39)
2	Ti	C7H15 - <i>n</i>	CH 3	C2H5	red solid	126-128	39.9	68.89(68.93)	10.00(9.76)	12.64(12.72)
3	Ti	C_7H_{15} - <i>n</i>	CH_3	$C_3H_7 - n$	red solid	130-132	41.3	69. 24(69. 73)	9.65(9.98)	12.31(12.11)
4	Ti	C7H15 - <i>n</i>	CH 3	C4H9- <i>i</i>	red solid	110-112	34.9	70.81(70.46)	10. 25(10. 18)	11.43(11.55)
5	Тi	C_7H_{15} - <i>n</i>	(CH ₂) 5		red solid	172–174	39.6	70. 55(70. 92)	9.61(9.59)	11. 59(11. 63)
6	Zr	C7H15-n	CH ₃	CH ₃	white solid	70-72	33.5	62.92(62.90)	9.11(8.80)	12.41(12.38)
7	Zr	C_7H_{15} - <i>n</i>	CH_3	C_2H_5	white solid	80-82	31.8	63.98(63.96)	8.95(9.06)	11.76(11.80)
8	Zr	C7H15-n	CH ₃	$C_3H_7 - n$	white solid	94-96	39.1	65.14(64.93)	9.40(9.30)	11.21(11.27)
9	Zr	C7H157 <i>n</i>	(CH2) 5		white solid	140-142	44.1	66. 15(66. 22)	8.96(8.95)	10. 73(10. 86)
10	Ti	C_8H_{17} - <i>n</i>	CH_3	CH ₃	red solid	125-127	50.5	68. 53(68. 93)	9.72(9.76)	12.66(12.72)
11	Ti	C_8H_{17} - <i>n</i>	CH ₃	C_2H_5	red solid	129-131	30.5	69.60(69.73)	10.48(9.98)	12.06(12.11)
12	Ti	C_8H_{17} - <i>n</i>	CH_3	$C_3H_7 - n$	red solid	126-128	28.7	70. 57(70. 46)	10. 23(10. 18)	11.35(11.55)
13	Ti	C_8H_{17} - <i>n</i>	CH_3	C_4H_9-i	red solid	132-134	40.8	71.24(71.12)	10. 13(10. 37)	11.02(11.05)
14	Ti	C8H17 - <i>n</i>	(CI	H2) 5	red solid	171–173	63.0	71.54(71.57)	9.78(9.80)	11.34(11.12)
15*	Zr	C_8H_{17} - <i>n</i>	CH_3	$C_3H_7 - n$	white solid	107-109	40.8	65.38(65.81)	9.87(9.51)	10.91(10.79)
16	Zr	C8H17 - <i>n</i>	CH 3	С₄Н9-і	white solid	117–119	41.0	66. 15(66. 62)	9.73(9.71)	10.35(10.30)
17	Zr	C_8H_{17} - <i>n</i>	(CI	H ₂) 5	white solid	143-145	58.5	66.82(67.02)	9.24(9.18)	10. 56(10. 41)
18*	Zr	Н	C_2H_5	C_2H_5	white solid	124-126	42.1	55. 15(55. 53)	6.76(6.99)	16. 52(16. 39)

 \ast Compounds 15 and 18 were prepared by method C, the others by method A.

按方法 A、B、C, 正辛基锂与 6, 6-二烷基富烯及 6, 6-多亚甲基富烯反应, 反应产物用 TiCl4 配合, 得产物的分布列于表 3。

表 2 化合物 1~18 的¹ H NMR 数据

Table 2 ¹H NMR Data for Compounds 1~18

compd.	¹ H NMR δ (ppm)
1	$6.37(_{t}),6.34(_{t})(8_{H},2\varkappa_{C5}_{H4}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.52\sim1.06(_{m}),0.87(_{t})(30_{H},2\varkappa_{C7}_{H_{15}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.52\sim1.06(_{m}),0.87(_{t})(30_{H},2\varkappa_{C7}_{H_{15}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.52\sim1.06(_{m}),0.87(_{t})(30_{H},2\varkappa_{C7}_{H_{15}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\varkappa_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H},4\iota_{CH_{3}}),1.36(_{s},12_{H}$
2	$ \begin{array}{l} 6.52(t),6.48(t)(8\mathrm{H},2\varkappaC_{5}\mathrm{H}_{4}),1.32(\mathrm{s},6\mathrm{H},2\varkappa\mathrm{CH}_{3}),1.84\sim1.46(\mathrm{m}),1.36\sim1.03(\mathrm{bs}),0.98\sim0.58(\mathrm{m}),(40\mathrm{H},2\varkappaC_{2}\mathrm{H}_{5},2\varkappaC_{7}\mathrm{H}_{15}) \end{array} $
3	$ \begin{array}{l} 6.51(t),6.48(t)(8\mathrm{H},2\varkappa\mathrm{C}_{5}\mathrm{H}_{4}),1.32(s,6\mathrm{H},2\varkappa\mathrm{C}\mathrm{H}_{3}),1.74\sim1.48(b),1.42\sim1.08(b\mathrm{s}),1.04\sim0.82(\mathrm{m}),1.42\sim1.08(b\mathrm{s}),1.04\sim0.82(\mathrm{m}),1.42\sim1.08(b\mathrm{s}),1.04\sim0.82(\mathrm{m}),1.04\sim0.04040404040404040$
4	$ \begin{array}{l} 6. \ 56(t) , 6. \ 50(t) (8H, 2 \times C_5H_4) , 1. \ 34(s, 6H, 2 \times CH_3) , 1. \ 74 \sim 1. \ 47(m) , 1. \ 41 \sim 1. \ 11(\mathrm{bs}) , 0. \ 99 \sim 0. \ 68(m) \\ (48H, 2 \times C_4H_9 , 2 \times C_7H_{15}) \end{array} $
5	$ \begin{array}{l} 6.\ 53(\ m,\ 8H,\ 2 \times C_{5}H_{4})\ ,\ 2.\ 05 \sim 1.\ 82(\ {\rm b})\ ,\ 1.\ 77 \sim 1.\ 46(\ {\rm b})\ ,\ 1.\ 38 \sim 1.\ 10(\ {\rm bs})\ ,\ 0.\ 97 \sim 0.\ 78(\ m\)\ (\ 50H,\ 2 \times C_{5}H_{10},\ 2 \times C_{7}H_{15}) \end{array} $
6	$6.\ 51(t)\ ,\ 6.\ 48(t)\ (\ 8H,\ 2\times C_{5}H_{4})\ ,\ 1.\ 36(s,\ 12H,\ 4\times CH_{3})\ ,\ 1.\ 54\sim 1.\ 06(bs)\ ,\ 0.\ 87(t)\ (\ 30H,\ 2\times C_{7}H_{15})$
7	$ \begin{array}{l} 6. \ 38(t), 6. \ 32(t)(8\mathrm{H}, 2\varkappa C_{5}\mathrm{H}_{4}), 1. \ 39(\mathrm{s}, 6\mathrm{H}, 2\varkappa \mathrm{CH}_{3}), 1. \ 80\thicksim1. \ 46(\mathrm{m}), 1. \ 36\thicksim1. \ 07(\mathrm{bs}), 0. \ 98\backsim0. \ 60(\mathrm{m}), (40\mathrm{H}, 2\varkappa C_{2}\mathrm{H}_{5}, 2\varkappa C_{7}\mathrm{H}_{15}) \end{array} $
8	$ \begin{array}{l} 6. 40(t), 6. 34(t)(8\mathrm{H}, 2\varkappa \mathrm{C}_{5}\mathrm{H}_{4}), 1. 37(\mathrm{s}, 6\mathrm{H}, 2\varkappa \mathrm{CH}_{3}), 1. 76\sim 1. 46(\mathrm{m}), 1. 40\sim 1. 08(\mathrm{bs}), 1. 00\sim 0. 82(\mathrm{m}), (44\mathrm{H}, 2\varkappa \mathrm{C}_{3}\mathrm{H}_{7}, 2\varkappa \mathrm{C}_{7}\mathrm{H}_{15}) \end{array} $
9	$ \begin{array}{l} 6.\ 37(\ m,\ 8H,\ 2 \times C_{5}H_{4}), 2.\ 03 \ \sim 1.\ 80(\ \mathrm{bs}), 1.\ 73 \ \sim 1.\ 42(\ m), 1.\ 33 \ \sim 1.\ 09(\ \mathrm{bs}), 0.\ 97 \ \sim 0.\ 75(\ m)(\ 50H,\ 2 \times C_{5}H_{10},\ 2 \times C_{7}H_{15}) \end{array} $
10	$6.\ 50(\ m,\ 8H,\ 2\textbf{\times}C\ _{8}H_{4})\ ,\ 1.\ 36(\ s,\ 12H,\ 4\textbf{\times}CH_{3})\ ,\ 1.\ 60\ \sim\ 1.\ 04(bs)\ ,\ 0.\ 98\ \sim\ 0.\ 68(\ m)\ (\ 34H,\ 2\textbf{\times}C_{8}H_{17})$
11	$ 6.51(m, 8H, 2 \times C_{5}H_{4}), 1.30(s, 6H, 2 \times CH_{3}), 1.92 \sim 1.44(m), 1.40 \sim 1.08(bs), 1.00 \sim 0.52(m) (44H, 2 \times C_{2}H_{5}, 2 \times C_{8}H_{17}) $
12	$ \begin{array}{l} 6.\ 52(\ t)\ ,\ 6.\ 46(\ t)\ (\ 8H,\ 2 \times C_{5}H_{4})\ ,\ 1.\ 32(\ s,\ 6H,\ 2 \times C\ H_{3})\ ,\ 1.\ 76 \sim \ 1.\ 44(\ m\)\ ,\ 1.\ 34 \sim \ 1.\ 08(\ b)\ ,\ 1.\ 00 \sim 0.\ 64(\ bs)\ (\ 48H,\ 2 \times C\ _{3}H_{7},\ 2 \times C_{8}H_{17}) \end{array} $
13	$ \begin{array}{l} 6.\ 54(\ t)\ ,\ 6.\ 49(\ m)\ (\ 8\mathrm{H}\ ,\ 2\ \varkappa\ C_{5}\mathrm{H}\ _{4})\ ,\ 1.\ 34(\ \mathrm{s}\ ,\ 6\mathrm{H}\ ,\ 2\ \varkappa\ \mathrm{CH}\ _{3})\ ,\ 1.\ 84\ \sim\ 1.\ 48(\ \mathrm{m}\)\ ,\ 1.\ 30\ \sim\ 1.\ 08\ (\mathrm{bs}\)\ ,\ 1.\ 00\ \sim\ 0.\ 62(\ \mathrm{m}\)\ (\ 52\mathrm{H}\ ,\ 2\ \varkappa\ \mathrm{C}\ _{4}\mathrm{H}\ _{9}\ ,\ 2\ \varkappa\ \mathrm{C}\ _{8}\mathrm{H}\ _{17}) \end{array} $
14	$ \begin{array}{l} 6. \ 51(m,\ 8H,\ 2\varkappa\ C_{5}H_{4}), 2. \ 08\sim1.\ 80(\mathrm{bs}), 1.\ 52\sim1.\ 44(\mathrm{b}), 1.\ 36\sim1.\ 08(\mathrm{bs}), 1.\ 00\sim0.\ 60(m)(54H,\ 2\varkappa\ C_{5}H_{10}, 2\varkappa\ C_{8}H_{17}) \end{array} \right. \end{array} $
15	$ \begin{array}{l} 6. \ 33(_{t}) \ , \ 6. \ 28(_{t}) \ (\ 8H, \ 2 \times C_{5}H_{4}) \ , \ 1. \ 32(_{s}, \ 6H, \ 2 \times C_{H_{3}}) \ , \ 1. \ 70 \\ \sim 1. \ 46(_{m}) \ , \ 1. \ 36 \\ \sim \ 1. \ 10(_{bs}) \ , \ 1. \ 00 \\ \sim 0. \ 66(_{m}) \ (\ 48H, \ 2 \times C_{3}H_{7}, \ 2 \times C_{8}H_{17}) \end{array} $
16	$ \begin{array}{l} 6. \ 39(t), 6. \ 30(t)(8\mathrm{H}, 2\varkappa C_{5}\mathrm{H}_{4}), 1. \ 36(\mathrm{s}, 6\mathrm{H}, 2\varkappa \mathrm{CH}_{3}), 1. \ 82\sim 1. \ 04(\mathrm{m}), 1. \ 40\sim 1. \ 10(\mathrm{bs}), 0. \ 98\sim 0. \ 60(\mathrm{m}), (52_{\mathrm{H}}, 2\varkappa C_{4}\mathrm{H}_{9}, 2\varkappa C_{8}\mathrm{H}_{17}) \end{array} $
17	$ \begin{array}{l} 6.38(t),6.30(t)(8\mathrm{H},2\varkappa\mathrm{C_{5}H_{4}}),2.04\sim1.76(b),1.72\sim1.40(m),1.32\sim1.06(b_{\mathrm{S}}),0.98\sim0.60(m)(54\mathrm{H},2\varkappa\mathrm{C_{5}H_{10}},2\varkappa\mathrm{C_{8}H_{17}}) \end{array} \end{array} $
18	6. $30(t)$, 6. $19(t)(8H, 2 \times C_5H_4)$, 2. $80(m, 2H, 2 \times CH)$, 1. $88 \sim 1.44(m, 8H, 4 \times CH_2)$, 0. $82(t, 12H, 4 \times CH_3)$

Table 3 Product s Distribution in Reactions of 6, 6-Dialkylfulvenes with <i>n</i> -Octyllithium*										
D1	D ²	m et hod A			m et hod B			method C		
K.	K-	1	2	3	1	2	3	1	2	3
CH_3	CH ₃	100			100			41	59	
CH_3	C_2H_5	100			100			53	47	
CH_3	$C_3H_7 - n$	100			100			100		
CH_3	C ₃ H ₇ - <i>i</i>	4	90	6						
CH_3	C4H9-i	100			100			100		
C_2H_5	C_2H_5								100	
(CH ₂) ₄			100	47	53			65	35
(CH ₂) 5	100			61	39		70	30	
(CH2) 6					8	92		5	95	

表 3 6,6-二烷基富烯与正辛基锂反应 的产物分布^{*}(由¹H NMR 分析得到,相对摩尔%) Fable 3 Product s Distribution in Reactions of 6 6-Dialkylfulvenes with *n*-Octyllithium

* In the table, 1. exocyclic double-bond addition, 2. exocyclic double-bond reduction,

3. & hydrogen abstract

结果与讨论

6, 6—二烷基富烯同体积较小的烷基锂, 如乙基锂、正丁基锂、异丁基锂可发生加成、还 原和 α -攫氢反应^[1,2]。而体积较大的烷基锂, 如正戊基锂、异戊基锂同富烯的反应则相对较 为简单, 在正戊烷—四氢呋喃(4 1 V/V)溶剂中, 与 6, 6—二烷基富烯及 6, 6—五亚甲基, 六 亚甲基富烯均发生加成反应, 与 6, 6—四亚甲基富烯发生 α -攫氢反应^[4]。在四氢呋喃—正戊 烷溶剂中(方法 A), 正庚基锂、正辛基锂同多种 6, 6—二烷基富烯及 6, 6—五亚甲基富烯亦仅 发生加成反应, 同 6, 6—四亚甲基富烯则进行 α -攫氢反应, 反应情况与正戊基锂、异戊基锂 十分相似。由此可见, 当烷基的碳数增加到一定程度(5)时, 链长的改变对烷基锂与 6, 6— 二烷基富烯反应类型的影响减小。

在四氢呋喃—正戊烷中,正辛基锂与6-甲基-6-异丙基富烯发生以还原为主的还原、加 成和 α-攫氢三种反应。这主要是由于立体位阻较大的异丙基阻碍了正辛基锂对富烯 6-位 碳的亲核进攻。

表 3 结果表明, 溶剂对烷基锂与 6, 6-二烷基富烯的反应类型具有一定的影响。在弱极 性溶剂正戊烷—四氢呋喃(4 1) (方法 A) 或正戊烷(方法 B) 中, 正辛基锂与 6, 6-二烷基富 烯倾向于发生环外双键加成反应; 在极性相对较强的溶剂乙醚(方法 C) 中反应, 加成反应 倾向减少, 还原反应倾向增强。

根据有机锂和有机镁与羰基化合物的反应机理推测, 6, 6-二烷基富烯同烷基锂发生 加成反应, 其机理应是富烯分子共振结构偶极体中, 环戊二烯基负离子首先与锂配位, 随 之烷基负离子进攻富烯 6-位碳正离子而形成加成产物, 如下式所示。

在极性小的溶剂中,烷基锂所受溶剂化程度小,锂原子除与烷基 R 结合外,其他部位

几乎完全 '裸露",容易与富烯偶极体环戊二烯基负离子配位,从而使烷基负离子 R 得以与 6-位碳正离子接近而发生加成反应;在极性较强的溶剂乙醚中,情况则相反,烷基锂溶剂 化程度较强,锂原子与乙醚分子配位而被"包裹",阻碍了锂原子与环戊二烯基负离子配 位,从而导致烷基负离子 R 难于接近富烯 6-位碳正离子,加成反应的倾向减小,还原反应 的倾向得以增强。

在正戊烷—四氢呋喃(方法 A)中,正辛基锂与 6,6-四亚甲基富烯及 6,6-五亚甲基富 烯分别选择性地发生 α-攫氢和加成反应(表 3),这一反应差别主要由环的构象决定^[7]。而 在正戊烷(方法 B)和乙醚(方法 C)中,与 6,6-四亚甲基,6,6-五亚甲基,6,6-六亚甲基富烯 皆进行还原和 α-攫氢或加成和还原两种反应,反应较复杂。

参考文献

[1] 陈寿山、姚文庆, 化学学报, 48(5), 494(1990).

- [2] 陈寿山、滑艳玲、雷致沛,自然科学进展——国家重点实验室通讯, 2(1), 27(1992).
- [3] 王家喜、陈寿山、王序昆,高等学校化学学报,14(4),495(1993).
- [4] 陈寿山、印寿根、周大炜、王家喜,自然科学进展—— 国家重点实验室通讯,4(6),877(1994).
- [5] 陈寿山,河北工学院学报(自然科学版),(1),90(1987).
- [6] 陈寿山、张正之、王序昆、刘以寅、张增佑,金属有机化合物合成手册,北京,化学工业出版社,32 (1986).
- [7] 陈寿山、陈优贤、王积涛,中国科学(B), 10, 1014(1989).

STUDIES ON REACTIONS OF 6, 6-DIALKYLFULVENES WITH LONG-CHAIN ALKYLLITHIUM—SYNTHESIS OF SUBSTITUTED TITANOCENES AND ZIRCONOCENES

He Zhengjie Yang Deyu Zhou Dawei Chen Shoushan

(Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071)

Zheng Qinghui Liu Yulong

(Institute of Applied Chemistry, Anhui University, H ef ei 230039)

The steric and solvent effects on reaction types of 6, 6-dialkylfulvenes and 6, 6polymethylenefulvenes with *n*-heptyllithium and *n*-octyllithium were investigated. Addition, reduction and α -hydrogen abstraction took place competitively when 6, 6-dialkylfulvenes and 6, 6-polymethylenefulvenes reacted with *n*-heptyllithium and *n*-octyllithium in three different solvents, respectively. A series of novel substituted titanocenes and zirconocenes compounds have been prepared by complexation of cyclopentadienyl anions obtained in the above reactions with TiCl4 and ZrCl4.