研究简报

3CaO•3A bO3•SrSO4的合成及晶体结构

程 新 于京华 +

(山东建材学院材料系,应用化学系⁺,济南 250022)

冯修吉** 宓锦校 沈今川

(武汉工业大学材料学院⁺⁺,武汉 430070)

(中国地质大学测试中心, 武汉 430074)

用助熔剂法首次合成了 $3C_{aO} \cdot 3A_{1O} \cdot srsO_{4}$ 单晶。测定了该单晶结构, 晶体属等轴晶系, 空间群为 I_{43m} 。晶胞参数为 a=9,210(4) Å, $\alpha=90$ °, Z=2, V=781,23 Å $^{3}, d_{cac}=2,80$ g/cm 3 。 晶体中A1和S 的配位数为4, Ca 的配位数为7和9, 构型为菱形十二面体。

关键词: 含锶硫铝酸钙 合成 单晶

 $3CaO \bullet 3A bO_3 \bullet SrSO_4$ 是活性很高的胶凝矿物,其强度高于目前的主要特种水泥矿物 $3CaO \bullet 3A bO_3 \bullet CaSO_4^{[1~3]}$,本文选择 PbC b作助熔剂首次合成 $3CaO \bullet 3A bO_3 \bullet SrSO_4 单晶,并获得其结构数据。$

实验部分

将分析纯化学试剂 CaCO₃, A bO₃, SrSO₄和 PbC b 分别粉磨过200目筛, 并按摩尔比 CaCO₃·A bO₃··SrSO₄= 3··3··1配料, 混匀后置于高温炉中烧至1350 , 保温140分钟后取出 风冷至室温。 此粉末经 XRD 分析为3CaO•3A bO₃•SrSO₄粉晶。

将3CaO•3A bO₃•SrSO₄粉晶和 PbCb按重量比3CaO•3A bO₃•SrSO₄··PbCb= 1··25混合 均匀,在高温炉中加热至850,保温24小时,最后升温至1020,保温36小时后取出冷至 室温,获得晶体尺寸为60~120 μm 的3CaO•3A bO₃•SrSO₄单晶。用显微镜观察,晶体为菱 形十二面体,半透明,有微弱的暗黄色。在正交镜下全消光,其折射率为1.573。通过元素 分析、EPMA 及 ICP 联合鉴定晶体组成为(CaO)_{2.98}(A bO₃)_{3.00}(SrSO₄)_{0.9%}

国家教委博士点基金和山东省自然科学基金资助项目。

* 通讯联系人。 第一作者:程 新,男,33岁,副教授、工学博士。研究方向:特种水泥材料结构与性能。

^{*} 收稿日期: 1995-09-01。

结果和讨论

选取0.1×0.1×0.1mm³的单晶, 在理学 RA SA -5R P 强功率四圆衍射仪上进行测定。X 光源为M oK @, 石墨单色器, 电压/电流为50 kV /150 mA, 狭缝 H = 3/4 °V = 3/4 ° 准直器 Φ= 1 mm (sin θ/λ= 0.81)。总共收集到1278个独立衍射点, 参与计算的 $F > 5.0 \sigma$ (F)的独立衍射点有130个, 最终偏差因子 R = 0.070, $R_{\omega} = 0.070$ 。晶胞参数由25个反射点 进行最小二乘法修正获得: a = 9.210(4)Å, $\alpha = 90$ °, Z = 2, V = 781.23Å³, $d_{cak} = 2.80$ g/ cm³。

图1 3CaO•3A bO3•SrSO4晶体结构沿C 轴的投影

Fig 1 Projection of 3CaO•3A bO3•SrSO4 structure along C axis 根据消光规律和衍射强度数据统计得到

衍射群为*m* 3*m* 1...,可能的空间群为 *I*432 (Na 211), *I*43*m* (Na 217)和 *Im* 3*m* (Na 229)。由归一结构因子值判断晶体没有对称 中心,这就排除了 *Im* 3*m*。由于单位晶胞中 Z = 2,因此有8个Ca(Sr),根据空间群的点对 称,Ca(Sr)在*I*43*m*和 *I*432两个空间群中只 能占据 *C* 套W yckoff位置(x, x, x)和(1/4, 1/4, 1/4),通过结构解析,表明选用 *I*43*m* 更为合理。所有原子坐标、占位度和各向同 性温度因子列于表1,主要键长、键角分别列 入表2和表3,晶体结构示于图1。

化合物中 Ca 和 Sr 在结构中随机占据 Ca(Sr)₁和 Ca(Sr)₂两个位置, Ca(Sr)₁与九 个O 构成不规则的九配位, Ca(Sr)₂与七个 O 构成七配位, A1与四个O, S 与四个O 分 别构成四配位。

表1 原子坐标,占位度和各向同性温度因子

Table 1 Final Coordinates Occupancy Factors (K) and Isotropic Temperature Factors of Atom	m s (U	J 11)
---	---------------	------	---

atom s	x/A	y/B	z/C	Κ	<i>U</i> 11
S	0 0000(0)	0 0000(0)	0 0000(0)	0 0417(0)	0 1057(161)
A 1	0 2500(0)	0 5000(0)	0 0000(0)	0 2500(0)	0. 0142(36)
Ca ₁	0 1900(17)	0 1900(17)	0 1900(17)	0 0721(26)	0.0048(39)
Sr_1	0 1900(17)	0 1900(17)	0 1900(17)	0 0213(9)	0.0048(39)
Ca ₂	0 2237(27)	0 2237(27)	0 2237(27)	0 0529(26)	0 0568(135)
Sr ₂	0 2237(27)	0 2237(27)	0 2237(27)	0 0204(9)	0 0568(135)
O 1	0 3988(49)	0 3988(49)	0 3988(49)	0 1667(0)	0 1849(201)
O ₂	0 1547(17)	0 1547(17)	0 4519(22)	0 5000(0)	0. 0268(78)

Table 2 Main Bond Length (nm)					
atom - atom	bond length	atom -atom	bond length	atom -atom	bond length
Ca(Sr) 23-O 47	24. 5553	Ca(Sr) 23-O 161	29. 8335	A l11-O 190	17. 3108
Ca(Sr) 23 - O 43	24. 5553	Ca(Sr) 31 - O 47	22 8581	A l11 -O 47	17. 3108
Ca(Sr) 23-O 39	24. 5553	Ca(Sr) 31-O 43	22 8581	A l11-O 54	17. 3108
Ca(Sr) 23-O 215	29. 2072	Ca(Sr) 31-O 39	22 8581	A l11-O 161	17. 3108
Ca(Sr) 23-O 207	29. 2072	Ca(Sr) 31-O 63	27. 9323	S9-O 215	16 1436
Ca(Sr) 23-O 211	29. 2072	Ca(Sr) 31-O 172	29. 6226	S9-O 211	16 1436
Ca(Sr) 23-O 150	29. 8335	Ca(Sr) 31-O 161	29. 6226	S9 -O 207	16 1436
Ca(Sr) 23-O 172	29. 8335	Ca(Sr) 31-O 150	29. 6226	S9-O 197	16 1436

表2 主要键长

表3 主要键角

Table 3 Main Bond Angles (deg)

atom - atom - atom	angles	atom -atom -atom	angles	atom -atom -atom	angles
O 215-S9-O 211	109. 4712	O 47-Ca(Sr) 23-O 39	104. 0393	O 211-Ca(Sr) 23-O 207	53 6542
O 215-S9-O 207	109. 4712	O 47-Ca(Sr) 23-O 215	96 6851	O 207 - Ca(Sr) 23 - O 172	111. 6331
O 215-S9-O 197	109. 4712	O 47-Ca(Sr) 23-O 211	96 6851	O 207-Ca(Sr) 23-O 161	111. 6331
O 211-S9-O 207	109. 4712	O 47 - Ca (Sr) 23 - O 207	145. 8796	O 207-Ca(Sr) 23-O 150	66 0175
O 211-S9-O 197	109. 4712	O 47-Ca(Sr) 23-O 150	148 1029	O 150-Ca(Sr) 23-O 161	118 3563
O 207-S9-O 197	109. 4712	O 47-Ca(Sr) 23-O 172	59. 6822	O 172-Ca(Sr) 23-O 161	118 3563
O 190 A l11 O 47	119.0674	O 215-Ca(Sr) 23-O 207	53 6542	O 150-Ca(Sr) 23-O 172	118 3563
O 190-A l11-O 54	104. 8969	O 215-Ca(Sr) 23-O 150	111. 6331	O 47 - Ca(Sr) 31 - O 39	115.7190
O 190 A l11 O 161	104.8969	O 215-Ca(Sr) 23-O 161	111. 6331	O 47-Ca(Sr) 31-O 63	77.8878
O 47-A l11-O 161	104.8969	O 215-Ca(Sr) 23-O 172	66 0175	O 47-Ca(Sr) 31-O 172	61. 4809
O 47 A l11 O 54	104.8969	O 211-Ca(Sr) 23-O 150	111. 6331	O 47-Ca(Sr) 31-O 161	61. 4809
O 161 A l11 O 54	119.0674	O ₂₁₁ -Ca(Sr) ₂₃ -O ₁₇₂	111. 6331	O 47-Ca(Sr) 31-O 150	170.8305
O ₄₇ -Ca(Sr) ₂₃ -O ₄₃	104. 0393	O ₂₁₁ -Ca(Sr) ₂₃ -O ₁₆₁	66 0175	O 47-Ca(Sr) 31-O 43	115.7190

参考文献

[1] Teoreanu, I, Muntean, M., Dragnea, I, Il Con ento, 83, 39(1986).

[2] Yan, P., A dvances in Cenent Research, 6, 65 (1993).

[3] 程 新,博士学位论文,武汉工业大学,(1994).

ON THE SYNTHES IS AND CRY STAL STRUCTURE OF 3CaO • 3A 12O 3 • SrSO 4

Cheng Xin Yu Jinghua⁺

(D epartm ent of M aterials S cience and Eng ineering, D epartm ent of A pp lided Chen istry⁺, Shangdong B uilding M aterials Institute, J inan 250022) Feng X iu ji^{+ +} M i J inx iao Shen J inchuan

(D epartm ent of M aterials Institute, W uhan University of Technology⁺⁺, W uhan 430070) (Test Center of China Geology University, W uhan 430074)

The 3CaO•3A kO 3• SrSO 4 single crystals are first prepared and defined with PbC b as a flux. By means of structure analyzing the overall crystal parameters are obtained. The space group is I43m, and unit cell parameter is a=9, 210 (4) Å, $\alpha=90$, Z=2, V=781, 23 Å³, $d_{cak} = 2, 80$ g/cm³. In the crystal A l and S ions are four, and Ca (Sr) is seven and nine coordinated to form rhom bic dodecahedron.