下采用石墨单色化 MoK. 辐射( $\lambda = 0.071073 \text{ nm}$ )、以  $\omega - 2\theta$  扫描方式在  $4^{\circ} \leq 2\theta \leq 50^{\circ}$ 范围内收 集独立衍射点 5789 个(Rint: 0.041)、其中 4613 个为可观测衍射点  $[F \geq 4\sigma(F)]$ , 衍射强度经 Lp 和经验吸收校正, 先由重原子法找出金属原子 Mo, 然后逐渐修正, 并从 DF 图上找到其他 非氢原子、使用全矩阵最小二乘法对非氢原子座标和温度因子进行结构修正, 最终一致性因 子 R = 0.0256 和权重因子  $R_{w} = 0.0295$ , 计算是用 SHELXTL PLUS(VMS)程序包完成。

# 2 结果与讨论

### 2.1 元素分析及谱学表征

配合物 C<sub>40</sub> H<sub>66</sub> N<sub>2</sub>Cl<sub>2</sub>Na<sub>4</sub>O<sub>36</sub> Mo<sub>8</sub> 的 C/H/N 元素分析:实测值(计算值)(%):C 23.48 (23.15)、H 3.16(3.30), N 1.47(1.35)。

红外光谱: (vmax: 1097 cm<sup>-1</sup>为 C-O-C 的伸缩振动峰,937,908,845,703 cm<sup>-1</sup>处的四条强 峰为八钼多酸阴离子的 Mo-O 的特征频率。

核磁共振( $\delta_{H}$ ): 1.08( $3H, t, CH_{3}$ ), 3.42 (2H, m, OCH<sub>2</sub>), 3.61( $4H, t, H_{A}$ ), 3.47 (4H, t, H<sub>B</sub>), 3.49( $8H, s, H_{c}, H_{D}$ ), 3.54 (4H, s, H<sub>E</sub>), 6.68(2H, m, H<sub>a</sub>), 7.14(2H, m, H<sub>b</sub>)。

### 2.2 晶体结构

配合物 C<sub>40</sub>H<sub>5b</sub>N<sub>2</sub>Cl<sub>2</sub>Na<sub>4</sub>O<sub>36</sub>Mo<sub>8</sub>; 单斜晶系, 空间群为  $P2_1/c$ , a = 1. 7803(4) nm, b = 1. 3674(3) nm, c = 1. 4610(3) nm,  $\beta = 112$ . 33 (2)°,  $\Gamma = 3$ . 290(1) nm<sup>3</sup>,  $M_r = 2021$ . 3, Z = 2,  $D_c = 2$ . 14 g/cm<sup>3</sup>,  $\mu = 1$ . 71 mm<sup>-1</sup>, F(000) =2079, 最终偏离因子 R = 0. 0256,  $R_w =$ 0. 0295,最后的差值电子云密度图上最高峰  $\Delta \rho_{max}$ 为 610e(nm)<sup>-3</sup>。



图 1 [Na(N-p-CIPh)15C5)(Et20)]+的结构 Fig. 1 Structure of [Na(N-p-CIPh)15C5)(Et20)]+

配合物的原子坐标及热参数列于表 1、部分键长和键角值列于表 2 和表 3、氮杂冠配位阳 离子结构示于图 1,八钼多酸钠阴离子结构见图 2,分子在晶胞中的堆积见图 3。

该超分子配合物由二个[Na(N(p-CIPh)15-C-5)(Et<sub>2</sub>O)]<sup>+</sup>和一个[Na<sub>2</sub>Mo<sub>8</sub>O<sub>26</sub>]<sup>2-</sup>八钼多酸 钠阴离子构成。阴离子中,每个 Mo 与六个 O 配位,形成 MoO<sub>6</sub> 变形八面体,八个 Mo 通过共边 相连组成  $\beta$  型[Mo<sub>8</sub>O<sub>26</sub>]<sup>4-</sup>八钼多酸根,此八钼多酸根又进一步与 Na<sup>+</sup>配位,构成具有中心对 称性的[Na<sub>2</sub>Mo<sub>8</sub>O<sub>26</sub>]<sup>2-</sup>阴离子。在该超分子配合物中无论是阴离子还是阳离子,均含有钠离 子,阳离子中的钠离子以 Na-O 键长为 0.242(1)-0.248(1) nm 和 Na-N 键长为 0.279(1) nm 与对甲基 15 氮杂环中的 4 个 O 原子和一个 N 原子配位,同时还以 Na-O 键长为 0.2410(8) nm 与乙醚分子中的 O 原子配位,其配位几何构型为五角锥型,即氮杂环中的 5 个配位原子 (O 和 N)形成五边形,而乙醚中的 O 原子位于五角锥的锥顶,该金属钠离子则填入五角锥体 内,以此方式构成了[Na(N-p-CIPh)15-C-5)(Et<sub>2</sub>O)]<sup>+</sup>配位阳离子(见图 2)。阴离子中的每个钠 离子(标为 Na(2)与来自于相邻的二个八钼多酸根的 6 个端基 O 原子(一个八钼多酸根的 4

. .

第13卷

个O和另一个八钼多酸根的 2 个 O)以键长为 0. 2377(8)-0. 2538(9) nm 配位,其配位几何构 型呈变形八面体,阴阳离子间通过静电作用构成一个由多个基团组成的超分子配合物。 

|         | 表』 配合物的非氢原子坐标和等效热参数(×10-'nm')                                          |     |
|---------|------------------------------------------------------------------------|-----|
| Tabla 1 | Atomic Coordinates and Equational Instantic Diminstrument Constitution | - / |

| Table 1 | able 1 Atomic Coordinates and Equevalent Isotropic Displacement Coefficients (×10 <sup>-1</sup> nm <sup>2</sup> ) |            |            | s (×10-' nm²) |
|---------|-------------------------------------------------------------------------------------------------------------------|------------|------------|---------------|
|         | Ţ                                                                                                                 | Ţ          | 2          | U(eq)         |
| Mo(1)   | 0.0666(1)                                                                                                         | 0.0899(1)  | 0.5724(1)  | 0.018(1)      |
| Mo(3)   | -0.0991(1)                                                                                                        | 0.1629(1)  | 0.4012(1)  | 0.022(1)      |
| Mo(3)   | -0.2010(1)                                                                                                        | 0.0335(1)  | 0.5015(1)  | 0.026(1)      |
| Mo(4)   | -0.0323(1)                                                                                                        | -0.0387(1) | 0.6747(1)  | 0.023(1)      |
| Na(1)   | -0.0681(1)                                                                                                        | 0.2297(1)  | 0.6654(2)  | 0.034(1)      |
| Na(2)   | 0.3034(1)                                                                                                         | 0.4467(2)  | 0.5824(2)  | 0.045(1)      |
| CI(1)   | 0.5787(1)                                                                                                         | 0.1302(2)  | 0.5533(2)  | 0.099(1)      |
| 0(1)    | -0.0574(2)                                                                                                        | 0.0455(2)  | 0.5261(2)  | 0.020(1)      |
| 0(2)    | 0.0206(2)                                                                                                         | 0.1465(2)  | 0.4405(2)  | 0.022(1)      |
| O(3)    | -0.0756(2)                                                                                                        | 0.0176(2)  | 0.3362(2)  | 0.022(1)      |
| O(4)    | -0.1974(2)                                                                                                        | 0.1028(2)  | 0.3873(2)  | 0.027(1)      |
| O(5)    | -0.1443(2)                                                                                                        | -0.0585(2) | 0.6063(3)  | 0.029(1)      |
| O(6)    | -0.1678(2)                                                                                                        | -0.0871(2) | 0.4180(2)  | 0.027(1)      |
| 0(7)    | -0.2989(2)                                                                                                        | -0.0017(3) | 0.4650(3)  | 0.043(2)      |
| 0(8)    | 0.0597(2)                                                                                                         | -0.1870(2) | 0.6417(2)  | 0.029(1)      |
| O(9)    | -0.0940(2)                                                                                                        | 0.2536(2)  | 0.4837(3)  | 0.030(1)      |
| O(10)   | -0.1211(2)                                                                                                        | 0.2199(3)  | 0.2903(2)  | 0.032(1)      |
| 0(11)   | -0.1917(2)                                                                                                        | 0.1334(3)  | 0.5753(3)  | 0.034(1)      |
| O(12)   | -0.0320(2)                                                                                                        | 0.0671(3)  | 0.7367(3)  | 0.032(1)      |
| 0(13)   | <b>0.</b> 0066(2)                                                                                                 | -0.1281(3) | 0.7618(3)  | 0.036(2)      |
| 0(14)   | 0.3086(2)                                                                                                         | 0.5781(3)  | 0. 4715(3) | 0.045(2)      |
| 0(15)   | 0.3215(2)                                                                                                         | 0.6014(3)  | 0.6681(3)  | 0.051(2)      |
| 0(16)   | 0.2138(3)                                                                                                         | 0.4552(4)  | 0.6684(4)  | 0.068(2)      |
| 0(17)   | 0.1689(3)                                                                                                         | 0.3891(3)  | 0.4787(3)  | 0.052(2)      |
| O(18)   | 0.4204(3)                                                                                                         | 0.1290(4)  | 0.2037(4)  | 0.071(2)      |
| NCD     | 0.2858(3)                                                                                                         | 0.3820(4)  | 0.3909(4)  | 0.047(2)      |
| C(1)    | 0. 4922(4)                                                                                                        | 0.2026(5)  | 0,5075(5)  | 0.051(3)      |
| C(2)    | 0.4997(4)                                                                                                         | 0.3030(5)  | 0.5100(5)  | 0.049(3)      |
| C(3)    | 0.4317(3)                                                                                                         | 0.3609(5)  | 0.4734(4)  | 0.045(2)      |
| C(4)    | 0.3544(3)                                                                                                         | 0.3[90(4)  | 0.4296(4)  | 0.038(2)      |
| C(5)    | 0.3486(4)                                                                                                         | 0.2179(5)  | 0.4301(5)  | 0.049(3)      |
| C(6)    | 0.4176(4)                                                                                                         | 0.1607(5)  | 0.4679(5)  | 0.057(3)      |
| C(7)    | 0.2940(4)                                                                                                         | 0. 4703(5) | 0.3380(5)  | 0.062(3)      |
| C(8)    | 0.2619(4)                                                                                                         | 0.5598(5)  | 0.3703(5)  | 0.057(3)      |
| C(9)    | 0.2842(5)                                                                                                         | 0.6670(5)  | 0.5024(5)  | 0.060(3)      |
| C(10)   | 0.3341(5)                                                                                                         | 0.6811(5)  | 0.6104(5)  | 0.063(3)      |
| C(11)   | 0.2563(4)                                                                                                         | 0.6237(5)  | 0.7005(5)  | 0.060(3)      |
| C(12)   | 0.2360(5)                                                                                                         | 0.5323(6)  | 0.7389(6)  | 0.075(4)      |
| C(13)   | 0.1305(5)                                                                                                         | 0.4585(7)  | 0.60[2(6)  | 0.083(4)      |
| C(14)   | 0.1163(5)                                                                                                         | 0.3785(7)  | 0.5292(6)  | 0.089(4)      |
| C(15)   | 0. [666(4)                                                                                                        | 0.3096(5)  | 0.4131(5)  | 0.063(3)      |
| C(16)   | 0.2050(4)                                                                                                         | 0.3401(6)  | 0.3455(5)  | 0.064(3)      |
| C(17)   | 0.3328(5)                                                                                                         | 0.2658(5)  | 0.1735(5)  | 0.073(4)      |
| C(18)   | 0.4156(5)                                                                                                         | 0.2335(5)  | 0.2175(6)  | 0.068(4)      |
| C(19)   | 0.5048(5)                                                                                                         | 0.0932(7)  | 0.2566(7)  | 0.102(5)      |
| C(20)   | 0.5116(6)                                                                                                         | -0.0042(7) | 0.2444(9)  | 0.129(7)      |

\* Equivalent isotropic b defined as one third of the trace of the orthogonalized  $b_0$  tensor.

- -- -----

• ٠

. .

,

٠

ala atau mpanganangkalar dali semenanan definingka periodo ato ato polo se matagina

- ------

·· ·---

维普资讯 http://www.cqvip.com

|              | Table 2 Selected | Bond Lenths ( $\times 10^{-}$ nm) |           |
|--------------|------------------|-----------------------------------|-----------|
| Mo(1)-Mo(2)  | 3. 217(1)        | Mo(1)-Na(1)                       | 3.706(3)  |
| Mo(1)-O(1)   | 2.138(3)         | Mo(1)-O(2)                        | 1.945(3)  |
| Mo(1)-O(8)   | 1.703(3)         | Mo(1)-O(1a)                       | 2.311(3)  |
| Mo(1)-O(3a)  | 1.951(3)         | Mo(1)-O(6a)                       | 1.752(3)  |
| Mo(2)-O(1)   | 2, 330(3)        | Ma(2)-O(2)                        | 1.998(3)  |
| Mo(2)-O(3)   | 2.307(3)         | Mo(2)-O(4)                        | 1.874(3)  |
| Mo(2)-O(9)   | 1.708(4)         | Mo(2)-O(10)                       | 1. 703(3) |
| Mo(3)-O(1)   | 2. 448(3)        | Mo(3)-O(4)                        | 1.940(4)  |
| Mo(3)-O(5)   | 1.942(3)         | Mo(3)-O(6)                        | 2.261(4)  |
| Mo(3)-O(7)   | 1.688(4)         | Mo(3)-O(11)                       | 1.708(4)  |
| Mo(4)-Na(1)  | 3.719(2)         | Mo(4)-O(1)                        | 2. 345(3) |
| Mo(4)-O(5)   | 1.880(3)         | Mo(4)-O(12)                       | 1.706(4)  |
| Mo(4)-O(13)  | 1.697(4)         | Mo(4)-O(2a)                       | 2.305(3)  |
| Mo(4)-O(3a)  | 2.008(4)         | Mo(1)-O(8)                        | 2. 498(5) |
| Na(1)-O(9)   | 2. 536(4)        | Na(1)-O(11)                       | 2. 472(4) |
| Na(1)-O(12)  | 2. 436(4)        | Na(1)-O(10a)                      | 2. 451(5) |
| Na(1)-O(13a) | 2.368(4)         | Na(2)-O(14a)                      | 2. 440(5) |
| Na(2)-O(15)  | 2, 450(5)        | Na(2)-O(16)                       | 2.392(7)  |
| Na(2)-O(17)  | 2.439(4)         | Na(2)-N(1)                        | 2.832(6)  |
| Na(2)-O(18a) | 2.387(5)         | C(1)-C(1)                         | 1.737(7)  |
| O(1)-Mo(1a)  | 2.311(3)         | O(2)-Mo(4a)                       | 2.305(3)  |
| O(3)-Mo(1a)  | 1.951(3)         | O(3)-Mo(4e)                       | 2.008(4)  |
| O(6)-Mo(1a)  | 1.752(3)         | O(10)-Na(1b)                      | 2. 451(5) |
| O(13)-Na(1a) | 2.368(4)         | O(14)-C(8)                        | 1. 417(7) |
| O(14)-C(9)   | 1.421(8)         | O(15)-C(10)                       | 1. 420(9) |
| O(15)-C(11)  | 1.434(10)        | O(16)-C(12)                       | 1. 421(9) |
| O(16)-C(13)  | 1. 434(8)        | 0(17)-0(14)                       | 1.403(12) |
| O(17)-C(15)  | 1. 438(9)        | O(18)-C(18)                       | 1. 450(9) |
| O(18)-C(19)  | 1.487(10)        | O(18)-Na(2a)                      | 2.387(5)  |
| N(1)-C(4)    | 1. 425(7)        | N(1)-C(7)                         | 1.471(9)  |
| N(1)-C(16)   | 1. 453(8)        | C(1)-C(2)                         | 1.377(10) |
| C(1)-C(6)    | 1.357(10)        | C(2)-C(3)                         | 1.374(8)  |
| C(3)-C(4)    | 1. 400(8)        | C(4)-C(5)                         | 1.387(9)  |
| C(5)-C(6)    | 1. 384(9)        | C(7)-C(8)                         | 1.499(10) |
| C(9)-C(10)   | 1.500(9)         | C(11)-C(12)                       | 1.470(12) |
| C(13)-C(14)  | 1. 472(13)       | C(15)-C(16)                       | 1.460(12) |
| C(17)-C(18)  | 1.436(11)        | C(19)-C(20)                       | 1.355(14) |

表 2 配合物的部分键长值(×10-nm)

-

第↓3 卷

# 表 3 配合物的部分键角值(\*)

|                              | Tabie 3            | Bond Angles (°)        |           |  |
|------------------------------|--------------------|------------------------|-----------|--|
| O(1)-Mo(1)-O(2)              | 78.7(1)            | O(1)-Mo(1)-O(8)        | 96.3(1)   |  |
| O(2)-Mo(1)-O(8)              | 100.4(1)           | O(1)-Mo(1)-O(Ia)       | 75.8(1)   |  |
| O(2)-Mo(1)-O(1a)             | 78. 4(1)           | O(8)-Mo(1)-O(1a)       | 172-1(1)  |  |
| O(1)-Mo(1)-O(3a)             | 79.0(1)            | O(2)-Mo(1)-O(3a)       | 150.7(1)  |  |
| O(8)-Mo(1)-O(3a)             | 100.7(2)           | O(1)-Mo(1)-O(6a)       | 157.8(1)  |  |
| O(2)-Mo(1)-O(6a)             | 97.0(2)            | O(8)-Mo(1)-O(6a)       | 105.8(2)  |  |
| O(1a)-Mo(1)-O(6a)            | 82.0(1)            | O(3a)-Mo(1)-O(6a)      | 96.6(1)   |  |
| O(1)-Mo(2) O(2)              | 73.1(1)            | O(1)-Mo(2)-O(3)        | 71.0(1)   |  |
| O(2)-Mo(2)-O(3)              | 71.4(1)            | O(1)-Mo(2)-O(4)        | 77.8(1)   |  |
| O(2)-Mo(2)-O(4)              | 146.3(1)           | O(3)-Mo(2)-O(4)        | 83.4(1)   |  |
| O(1)-Mo(2)-O(9)              | 91. 8(1)           | O(2)-Mo(2)-O(9)        | 96.5(1)   |  |
| O(3)-Mo(2)-O(9)              | 161.1(1)           | O(4)-Mo(2)-O(9)        | 101.0(2)  |  |
| O(1)-Mo(2)-O(10)             | 161.8(2)           | O(2)-Mo(2)-O(10)       | 99.2(2)   |  |
| O(3)-Mu(2)-O(10)             | 90.9(1)            | O(4)-Mo(2)-O(10)       | 103-3(2)  |  |
| O(9)-Mo(2)-O(10)             | 105.7(2)           | O(1)-Ma(3)-O(4)        | 73.7(1)   |  |
| O(1)-Mo(3)-O(5)              | 74.2(1)            | O(4)-Mo(3)-O(5)        | 144.8(2)  |  |
| 0(1)-Mo(3)-O(6)              | 69.8(1)            | O(4)-Mo(3)-O(6)        | 78.0(1)   |  |
| O(5)-Mo(3)-O(6)              | 77.8(1)            | O(1)-Mo(3)-O(7)        | 163.9(2)  |  |
| O(4)-Mo(3)-O(7)              | 103.6(2)           | O(5)-Mo(3)-O(7)        | 103.3(2)  |  |
| O(6)-Mo(3)-O(7)              | 94.1(2)            | O(1)-Mo(3)-O(11)       | 90.5(1)   |  |
| O(4)-Mo(3)-O(1])             | 97.2(2)            | O(5)-Mo(3)-O(11)       | 97.1(2)   |  |
| O(6)-Mo(3)-O(11)             | 160. 4(2)          | O(7)-Mo(3)-O(11)       | 105. 5(2) |  |
| O(1)-Mo(4)-O(5)              | 77.8(1)            | O(1)-Mo(4)-O(12)       | 92.1(1)   |  |
| O(5)-Mo(4)-O(12)             | 101.2(2)           | O(1)-Mo(4)-O(13)       | 161.8(2)  |  |
| U(5)-Mo(4)-O(13)             | 102.9(2)           | O(12)-Mo(4)-O(13)      | 105.5(2)  |  |
| O(1)-Mo(4)-O(2a)             | 71,1(1)            | O(5)-Mo(4)-O(2a)       | 83.8(1)   |  |
| O(12)-Mo(4)-O(2a)            | 161.3(2)           | O(13)-Mo(4)-O(2a)      | 90.8(2)   |  |
| O(1)-Mo(4)-O(3a)             | 73.0(1)            | O(5)-Mo(4)-O(3a)       | 146.3(2)  |  |
| O(12)-Mo(4)-O(3a)            | 96.4(2)            | O(13)-Mo(4)-O(3a)      | 99.8(2)   |  |
| O(2a) - Mo(4) - O(3a)        | 71.3(1)            | O(8)-Ng(1)-O(9)        | 72.4(1)   |  |
| O(8) - Ne(1) - O(11)         | 118.4(1)           | O(9)-Na(1)-O(11)       | 74.9(1)   |  |
| O(8) - Na(1) - O(12)         | 74,9(1)            | O(9)-Na(1)-O(12)       | 118-6(1)  |  |
| O(1)-Na(1)-O(12)             | 77.2(1)            |                        |           |  |
|                              | 142.9(1)           | O(9)-Na(1)-O(10a)      | 140.8(1)  |  |
| O(11) = Na(1) = O(10a)       | 91.7(1)            | O(12)-Na(1)-O(10m)     | 93.0(1)   |  |
|                              | 82.4(1)            | O(9)-Na(1)-O(13a)      | 102.3(1)  |  |
| $O(10_2)$ Na(1) $O(10_2)$    | 155.7(2)           | O(12)-Na(1)-O(13a)     | 123.1(1)  |  |
| O(103) = Na(1) + O(133)      | 75.2(])            | O(14)-Na(2)-O(15)      | 70.3(2)   |  |
| O(14) - Na(2) - O(16)        | 120.7(3)           | $O(15)-N_{4}(2)-O(16)$ | 70.6(2)   |  |
| $O(16) - N_{2}(2) - O(17)$   | 95.6(2)            | O(15)-Na(2)-O(17)      | 120.3(2)  |  |
| O(15)-Na(2)-O((7)            | 08.8(2)<br>196 440 | O(14)-Na(2)-N(1)       | 66.1(2)   |  |
| O(17)-Na(2) N/1)             | 190, 4(2)          | O(16) - Na(2) - N(1)   | 133. 2(2) |  |
| O(15)-Na(2)-O(18-)           | 04.4(2)<br>05 6/01 | O(14)-Na(2) O(18a)     | 125.1(2)  |  |
| $O(17) - N_a(2) \cap (18_a)$ | 39.0(2)            | U(16)-Na(2)-Q(18a)     | 101.4(2)  |  |
| Mo(1)-O(1) Mares             | 133.9(2)           | N(D-Na(2)-O( Ba))      | 109.9(2)  |  |
| Mo(2)-O(1) Mo(2)             | 92, V(1)           | Mo(1)-O(1)-Mo(3)       | 164.0(2)  |  |
| HOLDY HOLDY                  | 03,0(1)            | Mo(1)-Q(1)-Mo(4)       | 92.1(1)   |  |

- -- ------

, ,

.

٠

.

第2期

• 157 •

| Mo(2)-O(1)-Mo(4)   | 162.8(2)  | Ma(3) Q(1)-Ma(4)   | 85.6(1)   |
|--------------------|-----------|--------------------|-----------|
| Mo(1)-O(1)-Mo(1a)  | 104.2(1)  | Mo(2)-O(1)-Mo(la)  | 98.0(1)   |
| Mo(3)-O(1)-Mo(1a)  | 91.8(1)   | Mo(4)-O(1)-Mo(1a)  | 97.2(1)   |
| Mo(1)-O(2)-Mo(2)   | 109.4(2)  | Mo(1)-O(2)-Mo(4a)  | 110.3(1)  |
| Mo(2)-O(2)-Mo(4a)  | 104.1(1)  | Mo(2)-O(3)-Mo(1a)  | 110.3(2)  |
| Mo(2)-O(3)-Mo(4a)  | 103.7(1)  | Mo(1a)-O(3)-Mo(4a) | 109.3(1)  |
| Mo(2)-O(4)-Mo(3)   | 117.1(1)  | Mo(3)-Q(5)-Ma(4)   | 117.0(2)  |
| Mo(3) O(6)-Mo(la)  | 116.3(1)  | Mo(1)-O(8)-Na(1)   | 122.7(2)  |
| Mo(2)-O(9)-Na(1)   | 125.8(2)  | Mo(2)-O(10)-Na(1b) | 145.3(2)  |
| Mo(3)-O(11)-Na(1)  | 127.9(2)  | Mo(4)-O(12)-Na(1)  | 126.8(2)  |
| Mo(4)-O(13)-Ne(1a) | 150.9(3)  | Na(2)-O(14)-C(8)   | 114.2(4)  |
| C(8)-O(14)-C(9)    | 110.7(4)  | Na(2)-O(15)-C(10)  | 111.4(4)  |
| C(10)-O(15)-C(11)  | 112.8(5)  | Na(2)-O(16)-C(12)  | 111.0(15) |
| C(12)-O(16)-C(13)  | 113.8(6)  | Na(2)-O(17)-C(14)  | 113.9(4)  |
| C(14)-O(17)-C(15)  | 114.6(6)  | C(18)-O(18)-C(19)  | 110.7(6)  |
| C(18)-O(18)-Na(2a) | 116.8(4)  | C(19)-O(18)-Na(2a) | 131. 4(5) |
| Na(2)-N(1)-C(4)    | 92.1(3)   | Na(2)-N(1)-C(7)    | 105. 4(4) |
| C(4)-N(1)-C(7)     | 117.6(6)  | Na(2)-N(1)-C(16)   | 107.3(4)  |
| C(14)-N(1)-C(16)   | 119.6(5)  | C(7)-N(1)-C(16)    | 111.2(5)  |
| CI(1)-C(1)-C(2)    | 119.7(5)  | N(1)-C(4)-C(3)     | 118.6(5)  |
| N(1)-C(4)-C(5)     | 123. 4(5) | C(3)-C(4)-C(5)     | 117.9(5)  |
| N(1)-C(7)-C(8)     | 112.3(7)  | Q(14)-C(8)-C(7)    | 109.2(5)  |
| O(15)-C(10)-C(9)   | 111.4(5)  | O(15)-C(11)-C(12)  | 108.3(6)  |
| 0(18)-0(18)-0(17)  | 210 3(6)  |                    |           |



|餐 2 【Na₂Mo₄O₂₅」<sup>--</sup>|約出梅 Fig. 2 Structure of [Na₂Mo₅O₂s]<sup>2+</sup>

..... 标题配合物的晶胞堆积图
Fig. 3 Packing diagram of title complex

# 2.3 热分解过程

在氮气气氛中,考察了配合物的热重行为,得到了它们的 DTG 和 TG 曲线,由 TG 曲线推 得了配合物的热分解过程。该配合物的热分解过程分为三步,首先为乙醚分子的脱落,脱落 失重率为 7.638%,理论值为 6.99%,起始温度为 110C,终止温度为 210C,差热图显示在 188 C 处有一小的吸热峰,260 C 开始冠醚环上醚氧键的裂解,失重率为 25、34%,理论值为 23.90%.终止温度为 310 C,在 296 C 处出现一强且尖锐的放热峰;随之在 310 C 至 460 C 发 生苯环的解体,失重率为 7.64%,理论值为 7.18%,于 427 C 处出现一宽的放热峰。 在我们以前的报道中,参与对称性大环中 Na<sup>+</sup> 配位的溶剂分子通常为更小的分子如甲 醇和水<sup>[3~a]</sup>,然而在此系列配合物中却均为 Et<sub>2</sub>O 分子参与配位(乙醚参与配位并不多见)。这 可能是乙醚分子参与配位能比甲醇从更大程度充满空隙,增加该大环在晶格中的平衡稳定 性。NMR 实验表明,在溶液状态下,乙醚分子极易脱出,即将配合物溶于 CD<sub>3</sub>COCD<sub>3</sub> 中,加热 (水浴 60 C即可),使溶剂完全挥发,重新用 DMSO 为溶剂作的'H NMR 谱上,乙醚的 CH<sub>3</sub>CH<sub>2</sub> 的峰全部消失,说明配合物在溶液状态时乙醚分子极易失去,而结晶状态时,失去乙醚分子 的热分解温度为 210°C,呈现出一定的热稳定性。

#### 参考文献

[1] Lehn, J. M. Perspecture of Coordination Chemistry, William, A. F. et al Ed. V. H. C. A. New York, 1982, 447.

[2] Pope, M. T.; Achim, M. Angew, Chem., 1991, 30, 34.

[3] 鲁晓明、朱惠菊、刘顺诚,高等学校化学学报,1998,17(2),183.

[4] Schultz, R. A.; White, B. D.; Dishony, D. M.; Gokel, G. W. J. Am. Chem. Soc., 1965, 107, 6659.

[5] Lu, X. M. , Zhu, H. J. ; Liu, S. C. Chnese Chem. Lett., 1994, 5(1), 67.

[6] Lu, X. M. , Liu, G. X. ; Tu, S. J. ; Liu, S. C. Chinese J. Struct. Chem. , 1995, 14(2), 157.

[7] Lu, X. M.; Zao, Y. P.; Qu, E. L.; Xiao, L. M.; Liu, S. C. Chinese J. Struct. Chem., 1996, 15(4), 293.

[8] 鲁晓明、金祥林、刘顺诚,高等学校化学学报、1996,17(8),1173.

## CRYSTAL STRUCTURE AND THERMAL DECOMPOSITION OF

 $[Na(N-(p-CIPh)15C5)(Et_2O)]_2Na_2Mo_8O_{26}$ 

Lu Xiaoming Tu Shujie Qiao Chibing Liu Shuncheng (Department of Chemistry, Capital Normal University, Beijing 100037)

The crystal structure of supermolecular complex of  $[Na(N-(p-ClPh) 15C5)(Et_2O)]_2Na_2Mo_2O_{24}$ were determined by X-ray diffraction with the crystal parameters of a=1.7803(4) nm, b=1.3674(3) nm, c=1.4610(5) nm,  $\beta=112.33(2)^\circ$ ,  $\Gamma=3.290(1)$  nm<sup>3</sup>,  $M_r=2021.3$ ,  $D_c=2.14$  g/ cm<sup>3</sup>,  $\mu=1.704$  nm<sup>-1</sup>, F(000)=2079.63, R=0.0256 and  $R_w=0.0295$ . The thermal decomposition procedure of the title complex were discussed also by thermal decomposition and <sup>1</sup>H NMR experiments.

Keywords: N-(para-chlorophenyi)aza-15-crown-5 octamolybdate anion thermal decomposition

-- -