第2期 1997年6月

JOURNAL OF INORGANIC CHEMISTRY

Vol. 13, No. 2 June, 1997

钇(Ⅲ)的二特戊酰基甲烷螯合物的合成、表征 及热稳定性和升华性能研究 06/4322

表志好 *杨萍华 孟广耀

(中国科学技术大学材料科学与工程系,合肥 230026)

合成了钇(Ⅱ)的 :特戊酰基甲烷螯合物(简称 Y(DPM)s),并以红外光谱、核磁共振谱及 X-射 线物相分析进行了表征和鉴定。 研究了这种 B-二酮类螯合物的升华性能。结果表明,其升华速率与 温度呈指数关系,与载气流量呈线性关系:通过测定蒸气压与温度之间的关系,求得 130℃~164℃ 温度范围内的升华焓和升华熵,分别为 135 kJ·mol-1和 265 J·mol-1、K-1。实验研究表明,该整合 物具有良好的挥发性和热稳定性,适用于气相色谱研究和制备薄膜的金属有机化合物源。

热稳定性

升华焓 升华焰

希土钇的一些 β-二酮类螯合物在气相色谱[1]、薄膜制备[2]和真空提纯[3]等方面有着广泛 的应用。二特戊酰基甲烷「(CH₃)。CCO-CH₂-CCO(CH₃)。1、(简称 HDPM)与 Y³⁺形成的Y(DPM)。 具有较高的挥发性和热稳定性,特别适用于金属的气相色谱研究和 MOCVD 法制备钇化合物 薄膜的MO 源。从组成来看,DPM 只含有 C、H、O,排除了因分解形成有害气体的可能性。实际 上,Y(DPM)。已广泛用于高 Tc 氧化物超导薄膜制备[4.53]。我们曾报道了一些希土和 Ba,Cu 的 地制备了 Y-Ba-Cu-O 超导薄膜[8]和固体电解质 YSZ 薄膜[2]。本工作对前文报道[7]的Y、DPM)。 合成方法进行了改进,用1:1醇水溶剂取代无水乙醇,用 HAc-NaAc 缓冲体系取代 NaOH 来 控制反应液的 pH 值、这样可以减少有机溶剂用量、提高产率。同时还用多种手段对 β 二酮类 螯合物进行了结构表征和性能研究;特别考察了温度、载气流量等参数对螯合物升华速率的 影响,并通过测量不同温度下螯合物蒸气压,求得其升华焓和升华熵,这些工作国内外鲜见 报道。

实验部分 1

1.1 仪器

以国产 X4 型品微熔点测定仪测试整合物的熔点,170SX 型红外光谱仪(美国),KBr 压 片,扫描范围 400~4000 cm⁻¹; EM-360L 型核磁共振仪(美国),溶剂为 D₃C-CO-CD₃, TMS 为 内标、Y(DPM)。为溶剂的饱和溶液、2AB-HS 型质谱仪(英国), El 源、70 eV; TG-DTA 分析使 用岛津 TA-30 型热分析仪,样品 10.0 mg,参照物 Al₂O₃,升温速率 10 K · min⁻¹,测量温度范

收修改稿日期:1996-12-21。 收稿日期:1996-06-04。

国家自然科学基金资助项目。

第一作者:袁志好、男,32岁,现在中科院固体物理所攻读在职博士生;研究方向:纳米材料化学制备及性能研究。

围:室温至 500 C,气氛为空气。

1.2 警合物 Y(DPM), 的合成[4,7]

接 Y:HDPM(二特戊酰基甲烷、合成参考文献[9],沸点 $101\sim102\,\mathrm{C}$.)=1:3 的摩尔比称 取 Y₂O₃ 和 HDPM,HDPM 用 1:1 醇水溶液溶解,搅拌下加入 HAc-NaAc 缓冲体系,调节 pH 值在 $4\sim6$ 之间;将 Y₂O₃ 溶于过量的浓 HNO,中,小心蒸发至近干,溶于 1:1 的醇水溶液后,从分液漏斗中逐滴加入到 HDPM 的醇水溶液中,搅拌反应 $2\sim3$ 小时,抽滤得微黄色的初产品,经正己烷重结晶和真空升华提纯得白色产品,产率不低于 90%。

1.3 螯合物的升华实验

升华实验是在自制的升华装置上进行的,每次实验均准确称取 0.5 g 左右样品装入同一源舟,放入升华室中进行挥发,固定其他条件,考查温度和载气流量对挥发速率的影响,整合物挥发速率是根据一定时间内整合物失重量进行计算的,实验温度范围 130~200℃,载气为Ar 气,升华时间均为 20 分钟。

2 结果与讨论

2.1 螯合物的制备与结构表征

2.1.1 熔点测定

熔点数据可表征物质的纯度,经测定产品熔点为 $160 \sim 166^{\circ}$ C,比文献值 $169 \sim 172.5 \circ$ C^[10]略低,其原因可能有两方面。

- 2.1.1.1 吸附水 含有吸附水一般会导致熔点降低,红外光谱和差热分析(DTA)证实了整合物存在少量吸附水,吸附水的来源可能是由于样品暴露于空气中吸收了水分的缘故。
- 2.1.1.2 制备方法的不同 制备的环境对整合物的结构也有影响。Berry[·]等报道,用YCl₃和 DPM 的钠盐制备的整合物为聚合体的Y₂(DPM)。,其熔点为174~178℃。本产品的质谱中并没有出现其聚合体的碎片峰、表明它为单体Y(DPM)。。

2.1.2 红外光谱

HDPM 通常存在着一个烯醇式和酮式的共轭体系,即

(CH₃)₃CCOCH₂CCO(CH₃)₃(酮式)→→(CH₃)₃CCO-CH-OCC(CH₃)₃ (烯醇式)

烯醇式由于有分子內氢键键合,使得 C=O 键的伸缩振动频率出现在较低波数的 1604 cm⁻¹。在整合物的红外光谱中出现的 1565 cm⁻¹新峰,是烯醇式 β -二酮中的氢被 Y 取代后生成整合物的特征峰,表明整合物中配体 DPM 是以烯醇式与 Y³+配位,同时整合物的 IR 谱中出现~1500 cm⁻¹强新峰,为离域 C-C 振动频率,反应整合后,C=C 键上电子有向 Y³+转移的倾向[11],另外,IR 谱在 3700~3200 cm⁻¹之间有一宽而低的吸收峰,它对应整合物吸附水的 OH 拉伸振动。

2 1 3 核磁共振

Y(DPM)₃ 螯合物的 HNMR 谱只有两个峰,δ 1.12 ppm(单峰,18H),δ 5.62 ppm(单峰,1H),分别相应于-C(CH₃)₃ 和≕CH 基团上氢的化学位移。

2.1.4 质谱

通过对产物的质谱测定,可以获得有关分子的结构和分子量等信息。Y(DPM)。的主要质谱碎片峰及其解析结果表明:

- 2. 1. 4. 1 分子离子峰, m/e=638, 表明其分子量为638, 与螯合物的分子式Y(C11H19O2)3 一致。
- 2.1.4.2 m/e 在 0~1500 之间并没有出现螯合物聚合体的分子离子峰及相应的裂解碎 片峰,表明所制备的螯合物是单体 Y(DPM)3[4]。

2.2 整合物的热稳定性与挥发性

热重和差热分析可以有助于了解螯合物 的挥发性和热稳定性。图 1 为螯合物的 TG-DTA 曲线,可见~90 C 附近出现一个宽而平 的吸热峰,相应于螯合物失去吸附水的过程, 与红外光谱相符;第二个吸热峰出现在1700 附近,为样品熔化时的吸热峰,相应的 TG 曲 线失重速率剧增,迅速挥发时的吸热效应使 该吸热峰明显展宽。在270℃左右出现的吸热 峰系样品沸腾所致,根据外推峰的前缘与基图1 Y(DPM),的热重和差热曲线 线的交点所对应的温度,估计整合物的沸点 约为272 ℃。第四个热效应(410~440℃)为一

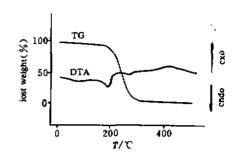
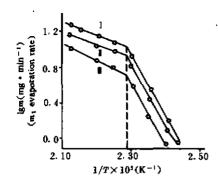


Fig. 1 TG and DTA curves of Y(DPM), chelate


放热峰,TG 曲线显示样品在 290 C 完全失重,因此,此放热峰可能是整合物蒸气在空气气氛 中燃烧的结果。这些结果表明:Y(DPM);在130C以上有良好的挥发性,在410C以下对热稳 定。

2.3 Y(DPM), 的升华性能

实验表明,螯合物的升华速率随温度的升高呈指数增大,随载气流量的增大呈线性增 大,实验结果示于图 2。由图可见:

- (1)不同载气流量下的 lgm(m, 整合物的升华速率或挥发速率,单位 mg·min-1)与 1/T 之间的线性关系均在~164 C 处出现转折,参照螯合物的熔点可知,转折点温度对应于螯合 物的熔点。 $\lg m \sim 1/T$ 直线分为两段,熔点之下段表示螯合物升华速率对温度的依赖关系,熔 点之上段则表示其液态的挥发速率受温度的影响。
- (2)三个流量下的升华速率的对数 $\lg m$ 与 1/T 的线性关系相互平行,进一步研究发现,在 较低的载气流量下,当温度等条件一定时,升华速率与载气流量成正比,即有 $m_1/m_2 = F_1/F_2$ (m, 和 m, 分别是载气流量为 F, 和 F, 时的升华速率)的关系。
- (3)对于螯合物液体的挥发速率,其 $\lg m \sim 1/T$ 的线性关系及三个不同流量下的 $\lg m \sim 1/T$ T 之间的平行关系均不如升华过程。这是由于样品首先要经过固·液的相变,并伴随升华的发 生,结果使得螯合物挥发速率的测定值与其实际值有较大的偏差。
- (4)根据前述螯合物蒸气压与升华速率之间的关系,将图 2 I 中升华段(130~164 C)lgm $\sim 1/T$ 的线性关系变换为 $\lg p \sim 1/T$ 的线性关系,变换结果示于图 3。将 Clausius-Clapeyron 方 程用于升华过程,则有

 $\lg P = -\Delta H_{+\#}/2$. 303R · $1/T + \Delta S_{+\#}/2$. 303R(R 为气体常数)

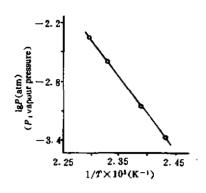


图 2 温度对 Y(DPM)s 挥发速率的影响

Fig. 2 Effect of temperature on the evaporation rate of Fig. 3 Effect of temperature on the vapour pressure Y(DPM)₃ chelate

1 : $P = 80 \text{ cm}^3 \cdot \text{min}^{-1}$, I : $F = 60 \text{ cm}^3 \cdot \text{min}^{-1}$, I : $F = 40 \text{ cm}^3 \cdot \text{min}^{-1}$

图 3 温度对 Y(DPM)s 螯合物蒸气压的影响

Y(DPM), chelate

由于载气载带的螯合物蒸气可看作是饱和蒸气,因此,根据图3中直线的斜率可求出螯 合物的升华焓;将直线外推到 1/T=0 处,可求出螯合物的升华熵。在测量的温度范围内(130 \sim 164℃),求得 $\Delta H_{\#\#} = 135.9 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta S_{\#\#} = 265.0 \text{ kJ} \cdot \text{mol}^{-1}$.

热分析和升华实验结果表明,Y(DPM)。具有较高的热稳定性和良好的升华性能,可用于 气相色谱研究和作为制备薄膜的 MO 源。

参考文献

- [1] Fujinaga, T.; Kuwamoto, T.; Kimoto, T. Talanta, 1978, 23., 753.
- [2] 方 起、彭定坤、胡克源、林祖镇, 无机材料学报, 1987, 2(2), 124.
- [3] Berg, E. W.; Acosta J. J. C. Anal. Chim. Acta, 1886, 40, 101.
- [4] Berry, A. D.; Holm, R. T.; Fatemi, M.; Gaskill, D. K. J. Mater Res., 1990, 5(6), 1169.
- [5] Harima H.; Ohnishi H.; Hanaoka K. I. et al Jyn. J. Appl. Phys., 1980, 29(10), 1932.
- [6] 袁志好、高建峰、刘双槐、孟广耀,薄膜科学与技术,1992,5(1),46、
- [7] 于 晖、孟广耀、彭定坤,中国科技大学学报(增刊),1986,88011,66.
- [8] Peng, D. K.; Meng, G. Y.; Cao, C. B. et al Journal de Physique C5, Supplement au n5, Tome 50, mai 1989, 149-153.
- [9] 于 晖、胡礼胜、彭定坤、孟广耀, 化学认剂, 1086, 8(2), 117、
- [10] Eisentraut, K. J.; Sievers, R. E. J. Am. Chem. Soc., 1985, 87, 5254.
- [11] Schimitscher, E. J.; Trias, J. A. J. Inorg. Nucl. Chem., 1970, 32, 811.

STUDY ON SYNTHESIS, CHARACTERIZATION, STABILITY AND SUBLIMATION BEHAVIOR OF YTTRIUM(I) DIPIVALOYLMETHANE CHELATE

Yuan Zhihao Yang Pinghua Meng Guangyao Peng Dingkun (Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026)

The beta-diketone chelate of Y, Y(DPM)₃ was synthesized, and characterized by IR, HNMR, MS and TG-DTA. The sublimation rate of the chelate strongly depended on the temperature and the flow rate of carrier gas. Heat of sublimation and entropy of the sublimation measured from 130 to $160 \, \text{C}$ were 135.9 kJ • mol • K⁻¹ and $265.0 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ respectively. The chelate has a good stability and volatility, which is very useful as MO precursor for MOCVD and gas chromatographic analysis.

Keywords:

beta-diketone chelate

 $Y(DPM)_3$

synthesis

volatility

heat of sublimation

entropy of sublimation

thermal analysis