Vol. 14, No. 3 Sept., 1998

俞马宏 新 松 杨绪杰 陆路德 汪 信, (南京理工大学化工学院,南京 210094)

本文用 CNDO/2 方法计算获得了钉(1)联吡啶配合物[Ru(bpy);(LL)]³⁺的电子结构参数(其 中 LL 为二齿螯合配体、2-(3-硝基苯基)吡啶阴离子、3-甲基-5-(2'-吡啶基)-1,2,4-三唑阴离子、 5、5'-二甲基-2,2'-二-1.3、4-硫代吡咯,2、3-二(2-吡啶基)喹喔啉、邻苯醌二亚胺,邻苯醌。讨论了配 体 LL 的结构对该系列配合物的电子结构、光谱和电化学性能的影响。计算结果与实验结果相吻合、 体现的规律性也是一致的。

钉(1)联吡啶配合物在光化学、光物理、电化学、电子和能量转移等的研究发展过程中有 着重要作用^[1]。钉(I)联吡啶配合物具有许多令人感兴趣的光谱和电化学特性,而这些性质与 所使用的配体的电子结构有关,尤其与它们的π电子接受能力和σ电子给予能力有关。然而涉 及该系列配合物的量子化学理论研究还很少^[2],而真正根据该类配合物的晶体结构数据进行 量化计算研究更少,前文报道过氮杂环配体钌配合物的 CNDO/2 研究^[3]。本文进一步用 CN-DO/2 计算研究了钉(I)联吡啶配合物[Ru(bpy)₂(LL)]³⁺的电子结构(其中 LL 为二齿螯合配 体,如 2-(3-硝基苯基)吡啶阴离子,3-甲基-5-(2'-吡啶基)-1,2,4-三唑阴离子,5,5'-二甲基-2, 2'-二-1,3,4-硫代吡咯,2,3-二(2-吡啶基)喹喔啉,邻苯醌二亚胺,邻苯醌,分别简写为 NPP⁻, MPT⁻、dbtd, bpq, bqdi, bqdo,配体结构如图 1 所示),从电子微观结构层次讨论了配体 LL 的 改变对配合物的电子结构、光谱和电化学性能的影响,从而阐明配合物的结构与性能之间的内 在联系。计算结果与实验事实吻合,体现的规律性也是一致的。

1 方法和模型

本 文 计 算 采 用 CNDO/2 方 法, 计 算 所 需 参 数 如 前 文 所 述^[3]。 钌 (I) 联 吡 啶 配 合 物 [Ru(bpy)₂(LL)]²⁺(LL=NPP^{-[4]}, MPT^{-[8]}, bpq^[6], bdtd^[7], bqdo^[6])的 配 位 体 系 如 图 1 所示, 对 应几何参数(键长、键角和二面角) 取 自 相 应 文 献 晶体 结构 数 据。

2 结果与讨论

2.1 配体结构对前线轨道性质的影响

收稿日期:1997-05-06。 收修改稿日期:1997-11-18。

江苏省科委自然科学基金资助项目。

^{*} 通讯联系人。

第一作者:俞马宏,男、30岁,博士生;研究方向:材料配位化学。

· 277 ·

通过[Ru(bpy)₂(LL)]²⁺的 CNDO/2 计算 HOMO 和 LUMO 的系数分析,发现 HOMO 均主要 定域于 Ru(I)的 d_u , d_{y2} 或 d_{y3} 轨道(d_{π}),说明配合物的电化学氧化是基于钌的失电子过程(见 式(1))。当配体 LL 为 NPP⁻、MPT⁻时,配合物 LUMO 很大程度定域地 bpy 的最低能 π^* 反键轨 道,说明配合物的还原是基于 bpy 的得电子过程(见式(2)),且说明对应最低能的金属到配体 电 荷迁移(MLCT)跃迁应为 Ru(d_{π})→bpy(π^*);而当配体 LL 为 dbtd、bpq、bqdi 和 bqdo 时,其 LUMO 很大程度定域于 LL 的最低能 π^* 反键轨道,说明配合物的还原是基于 LL 的得电子过程 (见式(3)),且对应最低能的 MLCT 跃迁应为 Ru(d_{π})→LL(π^*)。

$$[Ru^{\dagger}(bpy)_{2}(LL)]^{2+} \rightarrow e^{-} \rightarrow [Ru^{\dagger}(bpy)_{2}(LL)]^{3+}$$
(1)

 $[Ru'(bpy)_2(LL)]^{2+} + e^{-} \longrightarrow [Ru'(bpy^{-})_2(LL)]^{+} (LL = NPP^{-} \oplus MPT^{-})$ (2)

 $[Ru'(bpy)_2(LL)]^{2+} + e^{-} \longrightarrow [Ru'(bpy)_2(LL^{-})]^{+} \quad (LL = bdtd, bpd, bqdi \oplus bqdo) \qquad (3)$

图 1 [Ru(bpy)2(LL)]²⁺的配位模型和配体结构

Fig. 1 Coordinated system for the $[Ru(bpy)_2(LL)]^{2+}$ with structures of the ligands used

表 1 列出了钉(Ⅱ) 联吡啶配合物 [Ru(bpy)₂(LL)]²⁺ 的前线轨道能级计算值。为便于分析 比较,其光谱和电化学性质文献测定值也列于其中。

表 1 [Ru(bpy),(LL)]²⁺的前线轨道能量、光谱和电化学性质 Table 1 Frontier Orbital Energies, Spectral and Electrochemical Data of [Ru(bpy),(LL)]¹⁺ NPP⁻ MPT⁻ bpy dbtd bpd bqdi

بابا	NPP-	MPT-	бру	dbtđ	bpđ	bqdi	bqdo
B _H (eV)	-13. 239	-13-885	-17.639	-16. 959	-17. 250	-17.648	-18.058
E _L (eV)	- 2. 272	-2.399	→4.720	-5.365	6. 897	-7.927	- 9. 082
$B_{L/H}$	10. 967	11.486	12.919	11.594	10. 353	9.721	8.976
$E_{\rm res}(\mathbf{V})$	0.776[4]		1.270[1]	1.320[7]	1. 390[6]	1.370 ^[B]	1.650[10]
$E_{\rm tot}(V)$			-1.310[1]	-1. 010[7]	- 0. 780 ^[6]	→ 0. 450 ⁽⁹⁾	0.560[**]
$\Delta E_{\rm contract}$			2.580	2.330	2.170	1.820	1.090
$E_{\rm ste}({\rm eV})$	2. 505[4]	2.655 ^(s)	2. 749[1]	2.605(7)	2. 398[*]	2. 407 ^[B]	1. 934[tu]

 E_{H_2} energy of the highest occupied molecular orbital (HOMO), E_{L_2} energy of the lowest unoccupied molecular orbital (LUMQ), $\exists E_{L/H_2}$ energy gap from HOMO to LUMO, E_{ox} ; first oxidizational potential, E_{red} ; first reductional potential, $\Delta E_{ox/red}$; first oxidizational and reductional potential difference 由表 1 和图 2 可以一目了然看出配体 LL 的改变对该系列配合物 $[Ru(bpy)_2(LL)]^{2+}$ 的 前线轨道能级所产生的影响。当 LL 分别为 MPT⁻和 NPP⁻时,则 E_{H} 相应增大,且 E_{L} 也有 所增大,这是由于相对于配体 bpy 来说,NPP⁻ 或 MPT⁻具有较强的 σ 电子给予能力,增大了 中心钉原子的负电荷(见表 2),从而使相应配 合物的 HOMO 能级较不稳定(即增大),使之较 易被氧化(见表 1);同时通过 $d_{\pi}(Ru)-\pi^{*}(bpy)$

图 2 [Ru(bpy)₂(LL)]²⁺的前线分子轨道能级 Fig. 2 Frontier molecular orbital energy level diagram for [Ru(bpy)₂(LL)]²⁺ complexes

反馈 # 键使过多的钉电荷转移至配体 bpy 上,导致相应配合物的 LUMO 能级有所较稳定(即增大,但不及 HOMO 增得多,见表 1),使之较难被还原。

slope = -0.150, r = -0.933

slope = -0.378, r = -0.942

图 3 [Ru(bpy):(LL)]²⁺的前线轨道能量与光谱、电化学性质之间的相关(+为相关系数)

Fig. 3 Correlation between frontier orbital energies and electro-and photo-chemical properties for $[Ru(bpy)_2(LL)]^{2+}$ complexes

(LL=NPP⁻, bpy, dbtd, bpq, bqdl and bqdo, r=correlation coefficient)

而当配体 LL 分别为 dbtd、bpq、bqdi 和 bqdo 时, E_L 相应降低,且 E_R 相应也有所降低(但不 及 E_L ,见表 1),这是由于配体 dbtd、bpq、bqdi 和 bqdo 具有相对较低能的 π^* 反键轨道,亦即较 低的 LUMO 能级,故而使之更易被还原(见表 1);同时通过 $d\pi(Ru)-\pi^*(LL)$ 反馈 π 键增大钌的 正 电荷(见表 2),从而使相应配合物的 HOMO 能级较稳定(即降低),使之较难被氧化(见表 1)。由上述分析可见,配体 LL 的改变所引起配合物[Ru(bpy)₂(LL)]²⁺的 HOMO 和 LUMO 能级 的变化趋势分别与相应的氧化和还原电势的变化趋势是相同的,此外,发现它们之间也存在着 一定的相关性(见图 3(a-b))。

比较表1的 *dE*_{L/R}数据可见、当[Ru(bpy)₂(LL)]³⁺中的一个 bpy 配体被其他配体 LL 取代 后、*iE*_{L/R}均降低,与对应的可见光谱最低吸收能(*E*_{asc})均降低(即光谱吸收红移)的实验事实相 一致,这是由于配体 LL 的改变导致配合物的 HOMO 能级的显著提高或 LUMO 能级的显著降 低的缘故。尽管计算值 *iE*_{L/R}偏高,然而体现的规律性是一致的、并且分别与 *E*_{asc}和 *dE*_{ac/res}之间 也具有一定的相关性(见图 2(c-d))。这些相关表明该系列配合物光谱吸收和氧化还原过程均 涉及相同的 HOMO 和 LUMO。因而合理选择配体结构可望协调钉(I)配合物的电子结构、光 谱和电化学性能。

2.2 配体结构对电荷分布和化学键性质的影响

Ku-N(Dpy) Bond Order In [Ku(Dpy)2(LL)].										
LL	NPP	MPT	бру	dbtd	dpq	bąđi	pdo			
q	-0.01629	0. 08468	0.11887	0. 11721	0.12472	0.16757	0. 26785			
55	0.31447	0.30583	0. 29865	0.30379	0. 30256	0. 30231	0. 28927			
5p	0.88258	0.86762	0.85418	0.86128	0.85590	0.85683	0.82187			
4d	6.81924	6.74187	6. 72830	6.71772	6.71682	6.67329	6.62102			
d ₂ 1	0.60766	0. 48763	0. 42307	0.43014	0. 48292	0. 49589	0. 48856			
$d_{y^2-y^2}$	0 45182	0.45250	0. 48084	0.49719	0.47519	0.52568	0. 51718			
d _{na}	1.95094	1.95375	1.96516	1.94501	1.94946	1. 92236	1.91073			
dy.	1.94080	1.95635	1.96290	1.95598	1.91676	1. 92519	1.91738			
duy	1.86802	1. 89 164	1. 89633	1.88942	1.89250	1.80417	1.78717			
Ru-N(bpy)	0.34005	0. 33169	0.36088	0.36240	0.35679	0.35871	0, 35995			

表 2 [Ru(bpy),(LL)]²⁺中钌(1)原子的净电荷、电子组态和轨道电荷以及 Ru-N(bpy)鏈级 Table 2 Net Charge(q), Electron Cofiguration, and Orbital Charge of Atom Ru and Ru N(bury) Band Order to [Bu Owne) (11)]¹⁺

表 2 列出了 [Ru (bpy)₂ (LL)]²⁺ 中钌(I)原子的净电荷、电子组态和轨道电荷以及 Ru-N(bpy)键级。当[Ru(bpy)₃]²⁺中的一个 bpy 被配体 NPP⁻或 MPT⁻取代后,Ru 的净电荷降低 (见表 2),表明 NPP⁻或 MPT⁻具有较强 σ 电子给予能力和较弱的 π 电子接受能力,这也与对应 配合物的 HOMO 能级增大是一致的;而被配体 dbtd、bpq、bqdi 或 bqdo 取代后,Ru 的净电荷基 本增大(见表 2),这表明它们具有较强的 π 电子接受能力(相对于 bpy),增强了 $d\pi$ (Ru)- π *(LL) 轨道混合,加强 $d\pi$ (Ru)- π *(LL)反馈 π 键,从而导致电子的反馈。

由 [Ru(bpy)₂(LL)]²⁺ 中 Ru 的电子组态(见表 2)可知,原来空的 5s 和 5p 轨道已布有电子 (分别为约 0. 3 和 0. 8 电子),原来具有 6 个电子的 4d 轨道,其电子增加到 6. 62~6. 82(这是由 于 $d_x^2 n d_{x^2-y^2}$ 轨道参与配键),这些表明钉已和配体轨道之间重叠形成 σ 配键。由 Ru 的 d_{xx}, d_{yx} 和 d_{xy} 电荷(配位前各占有 2 电子)可知, d_{xx}, d_{yx} 和 d_{xy} 轨道(d_{π})与配体 π^* (LL 或 bpy)轨道混合、 形成金属与配体之间 $d_{\pi-\pi}$ 、反馈键,从而使 Ru 的 d_{π} 轨道电荷反馈到配体上,亦即降低了 Ru 的 d_{π} 轨道电荷(均少于 2 电子),表明钉和配体之间形成 π -反馈键^[1]。当[Ru(bpy)₃]²⁺的一个

第14卷

bpy 配体被具有较低能 π^* 配体 dbtd、bpq、bqdi 或 bqdo 或具有较强的 σ 电子给予能力配体 NPP⁻或 MPT⁻取代后,Ru 的 $d\pi$ 轨道电荷(见表 2)均降低,表明它们均增强了 $d\pi$ - π^* 轨道混合 (其中前者通过配体的 π^* 轨道能级的降低,后者则通过金属的 $d\pi$ 轨道能级的提高)。

键级大小可作为衡量共价成键程度的一种度量。当[Ru(bpy)₃]²⁺的一个 bpy 配体被其他 配体取代后,Ru-N(bpy)键级(见表 2)基本降低,说明 Ru 或 bpy 之间的共价性程度降低,这是 由于配体 NPP⁻或 MPT⁻增大钌的负电荷,从而减弱了 Ru 和 bpy 之间的 σ 键;配体 dbtd、bpq、 bqdi 或 bqdo 增大了钌的正电荷,从而减弱了 Ru 和 bpy 之间的 π 键。

参考文献

- [1] Juris, A.; Balzani, V.; Barigelleti, F. et al Coord. Chem. Rev. 1988.84,85.
- [2] Barigelletti, F.; Juris, A.; Balzani, V.; Belser, P.; von Zelewsky, A. Inorg. Chem., 1987, 28, 4115.
- [3] 俞马宏、靳 松、陆路德、杨绪杰、汪 信, 无机化学学报, 1997, 13, 276.
- [4] Reveco, P.; Schmehl, R. H.; Cherry, W. R. et al Inorg. Chem., 1985, 24, 4078.
- [5] Buchanan, B. E.; Vos, J. G.; Kaneko, M. et al J. Chem. Soc., Dollow Trans., 1990,2425.
- [6] Rillema, D. P.; Tag hdiri, D. G.; Jones, D. S. et al Inorg. Chem., 1987,28,578.
- [7] Fennema, B. D. J. R.; de Graaff, R. A. G. et al J. Chem. Soc., Dolton Trucs., 1991,1043.

[8] Boone, S. R.; Pierpont, C. G. Polyhedron, 1990, 9, 2267.

- [9] Masui, H.; Lever, A. B. P.; Dodsworth, E. S. Inorg. Chem., 1993, 32, 258.
- [10] Masui, H.; Lever, A. B. P.; Auburn, P. R. Inory. Chem., 1991, 30, 2402.

INFLUENCE OF THE LIGAND STRUCTURE ON THE ELECTRONIC STRUCTURES OF RUTHENIUM (1) BIS(2.2'-BIPYRIDINE) COMPLEXES

Yu Mahong Jin Song Yang Xujie Lu Lude Wang Xin (Department of Chemistry, Nanjang University of Science and Technology, Nanjang 210094)

The electronic structures parameters of ruthenium (\mathbb{I}) complexes $[Ru(bpy)_2(LL)]^{2+}$ have been obtained by CNDO/2 SCF-MO calculation, where LL=2-(3-nitro-phenyl) pyridine anion (NPP⁻), 2-methyl-5-(pyridine-2'-yl)-1,2,4-triazole anion (MPT⁻), 2,2'-bipyridine (bpy), 5,5'-dimethyl-2,2'-bi-1,3,4-thiadiazole (dbtd), 2,3-bis-(2-pyridyl) quinoxaline (dpq), o-benzoquinone diimine (bqdi), and o-benzoquinone dioxo (bqdo). The effect of ligand structure on the inherent properties of the complexes such as electronic structure, UV/visble spectra, and electrochemical property and their chemical bonding are discussed on the view of electronic microstructures. Calculations verify nicely the experimental findings.

Keywords: ruthenium (1) bis(bipyridyl) complexes CNDO/2 electronic structure chemical bond