308-312

Vol. 14, No. 3 Sept. , 1998

2,3-吡嗪二甲酸钴(I)配合物的合成与结构

胡晓东 徐 正"

0614.812

(南京大学配位化学研究所,南京 210093)

(东南大学化学化工系,南京 210096)

在不同的反应介质条件中,用2,3-吡嗪二甲酸(C_iN₂H₂(COOH)₂,简称 Pzdc)与 Co(NO₃)₂ · 6H₂O 或 Co(ClO₄)₂ · 6H₂O 反应,得到了三个新的不同组成的 2,3-吡嗪二甲酸钴(\mathbf{I})配合物,并进行了表 征。通过 X 射线晶体结构分析,获得了 Co(Pz(COO)COOH)₂ · 2H₂O 的晶体学数据,表明 Co(\mathbf{I})处于 由 Pzdc 中的 2 个 N、2 个 O 及 2 个配位水中的 2 个 O 组成的八面体结构中。同时,我们对 CoPz(COO)₂ · 4H₂O和 CoPz(COO)COOH(ClO₄) · 4H₂O 进行了变温磁化率测试,结果表明这两个化

磁性配合物的合成与研究是目前配位化学中一个非常活跃的领域^[1]。桥联配体是影 响多核配合物磁相互作用的一个十分重要的因素。吡嗪是一个非常好的桥联配体,金属离子可 以通过和它的轨道重叠而达到相互间的电子偶合,因而它是一个潜在的磁交换作用的媒介^[2]。 羧酸配体也可以作为桥联基团为金属提供磁交换作用的途径^[3]。然而,对于同时包含这两类基 团的吡嗪二甲酸类配合物的研究^[4]却相对很少。本文报道了 3 个不同组成的 2,3-吡嗪二甲酸 锗(I)配合物的合成,红外光谱、晶体结构及磁化率。

1 实验部分

LI 仪器与试剂

元素分析采用美国 Perkin-Elmer 公司的 240C 型自动元素分析仪,红外光谱采用 Nicolet-170SX FT-IR 光谱仪,X-射线结构分析采用 Enrf-Nonius CAD 4 四圆衍射仪,磁化率采用 CF-1 ESM 磁天平(1.5-300K)。所有试剂均为分析纯,Pzdc 合成见文献^[5]。

I2 配合物的合成

1, 2, 1 $Co(Pz(COO)COOH)_2 \cdot 2H_2O(1)$

将 168 mg(1 mmol)Pzdc 溶于 10 ml 水中,搅拌下加入溶有 291 mg(1 mmol)Co(NO₃)₂.
6H₂O 的 10 ml 水溶液,加热至沸后自然冷却,溶液静置自然挥发,第二天析出红色块状晶体,

通讯联系人

邹建忠

收稿日期:1997-06-23. 收修改稿日期:1997-09-19.

国家自然科学资助项目。

第一作者:胡晓东,男,25岁,研究生,研究方向,过渡金嶌多核配合物的合成和性质研究。

过滤,用少量水洗后真空干燥,元素分析结果见表1。

1. 2. 2 $CoPz(COO)_2 \cdot 4H_2O(I)$

将 168 mg(1 mmol)Pzdc 溶于 10 ml 水中,搅拌下加入 70 mg(0.5 mmol)无水 K₂CO₃,继续 搅拌 5 min,再加入溶有 291 g(1 mmol)Co(NO₃)₂ · 6H₂O 的 10 ml 水溶液,加热至沸,自然冷却 后过滤,滤液自然挥发至原体积一半时,放入密闭体系中用甲醇蒸气扩散数天,溶液中析出红 色微晶,过滤,用少量甲醇洗涤后真空干燥,元素分析结果见表 1。

1. 2. 3 $CoPz(COO)COOH(ClO_4) \cdot 4H_2O(\mathbb{I})$

在 168 mg(1 mmol)Pzdc 的 10 ml 水溶液与 2 ml 70%的 HClO4 水溶液混合,搅拌下加入溶 有 366 mg(1 mmol)Co(ClO4)₂ · 6H₂O 的 10 ml 水溶液,加热至沸后冷却,溶液自然挥发数天后 出现红色块状晶体,过滤,用少量水洗涤后真空干燥,元素分析结果见表 1。

赛 1 配合物元素分析结果	
---------------	--

Talba	e 1	Elemental	Analysis	Data of (Complexes	·~∎	
<u> </u>	_				<u> </u>		

aom plan		C	1	N	н	
complex	found	caled.	found	calcd.	found	caled.
Co(Pz(COO)COOH); · 2H2O	33. 52	33. 28	12.98	13.18	1.50	1.41
CoPz(COO) ₂ • 4H ₂ O	23.98	24.24	8.90	8. 90	3.55	3.37
CoPz(COO)COOH(ClO,) · 4H;O	18. 41	18.11	7.03	7.04	2.62	2.77

1.3 配合物(1)的结构测定

选取大小为 0.25×0.2×0.15 (mm)的红色块状晶体,296 K 时置于 Enraf Nonius CAD4 四 圆衍射仪上,采用经石墨单色化的 Mo-Ka 射线($\lambda = 0.71073$ Å),以 $\omega - 2\theta$ 扫描方法,在 $\theta < 27^{\circ}$ 范围内收集 1807 个衍射点,其中独立衍射点 1715 个,可观察衍射点 1210 个($1 > 3\sigma(1)$)用 于结构计算,这些衍射点计算前均经过经验吸收校正,晶体结构由直接法解出,氢原子全部从 差 Fourier 图找到,其坐标亦参加结构校正,配合物(1)晶体学数据见表 2。

表 2 配合物(1)晶体学数据

lable 2 Crystal Data of Complex (1)				
formula	C ₁₂ H ₁₀ N ₄ O ₁₀ Co	ア(人)	728(1)	
formula weight	429.17	Z	2	
crystal system	monocijnie	Dx(g · cm ⁻³)	1.96	
space group	P21/#	$\mu(\text{cm}^{-1})$	12.43	
a(L)	7.382(7)	F(000)	434	
6(Å)	9.673(2)	2θ(max)(*)	53.9	
c(Å)	10, 133(6)	R	0.041	
¢l°)	93.24(6)	R	0.050	

2 结果与讨论

2.1 红外光谱

样品经真空干燥后、KBr 压片,在 Nicolet-170SX FT-IR 光谱仪上测定,其部分红外吸收频 率见表 3。

第14卷

Taibe 3 Significant IR Absorption Frequencies (cm^{-1}) of the Complexes				
complexes	чон	^и с-н		PCIO (
Co[Pz(COO)COOH]2 · 2H2O	3566 3441 3328	3075	1678 1659 1614 1575 1501 1435 1348	
CoP2(COO)2 • 4H2O	3501 3338	3079	1631 1602 1447 1385	
CoPz(COO)COOHCIO ₄ • 4H ₂ O	3467 3432	3077	1634 1603 1579 1487 1443 1420 1374	1113 1096 1084

表 3 配合物的主要 IR 吸收频率

从表中数可以看出,配合物(Ⅰ, Ⅰ, Ⅱ)均在 3600~3300 (cm⁻¹)处存羟基的振动吸收,它 包括 Pzdc 分子内氢键的振动吸收和配位水的振动吸收,3070 cm⁻¹左右为吡嗪环骨架 C-H 振 动吸收,吡嗪环骨架振动吸收则在 1700~1300 (cm⁻¹)范围内。配合物 Ⅱ中 1100 cm⁻¹附近三个 尖峰(1113、1096、1084)则是配位 CIO, 一的振动吸收,它表明 CIO, 一以单齿配位形式存在。

2.2 晶体结构

配合物(I)的原子坐标及热能参数见表 4,部分键长及键角见表 5,晶体结构见图 1,晶胞 堆积见图 2。

atom	r	y	z	₿(eq)
Co	0	0	1.0000	1.72(3)
0(1)	0.1361(2)	-0.1724(3)	0.9172(2)	2.1(1)
0(2)	0.3425(3)	-0.2105(3)	0.8289(2)	2.5(1)
O(3)	0.5500(3)	-0.0463(4)	0.7735(3)	3.3(1)
0(4)	0.6429(3)	0.2109(4)	0.8125(3)	2.9(1)
0(5)	0.0838(3)	-0.0592(4)	0.1932(3)	2.4(1)
N(I)	0.1782(3)	0.1569(4)	0.9667(3)	1.8(1)
N(2)	0.4183(3)	0.3417(4)	0.9121(3)	2.4(1)
C(1)	0.1896(4)	0.3238(5)	0.9969(3)	2.2(1)
C(2)	0.3110(4)	0.4180(5)	0.9684(4)	2.5(1)
C(3)	0.4081(3)	0.1729(5)	0.8818(3)	1.8(1)
C(4)	0.2865(3)	0.0750(5)	0.9096(3)	1.6(1)
C(5)	0.2531(3)	-0.1162(5)	0.8831(3)	1.8(1)
C(6)	0.5437(3)	0.1086(5)	0.8180(3)	2.2(1)

表 4 原子坐标和热参数

Talbe 4 Atomic Coordinates and Thermal Parameters B(eq)(A')

表 5 部分键长及键角

Table 5 Selected Bond Distances and Angles

bond distances()		D(2)-C(5)	1.258(4)
Co-O(1)	2.051(3)	O(3)-C(6)	1. 274(5)
Co-N(1)	2. 102(3)	O(4)-C(6)	1. 220(4)
Co-O(5)	2.117(3)	D(1)-C(5)	1.246(4)
bond angles(")			
O(1)-Co-O(la)	180.00	C(4)-N(1)-Co	115.2(2)
O(1)-Co-N(1)	77.5(1)	O(1)-C(5)-O(2)	122.8(3)
O(1)-Co-O(5)	91.8(1)	D(3)-C(6)-D(4)	122.2(3)
N(1)-Co-N(1a)	180(5)	С(5)-О(1)-Сор	118.0(2)
N(1)-Co-N(5)	90.8(1)	C(1)-N(1)-Co	124.9(2)
Q(5)-Co-Q(5a)	180. 00		

• 311 •

从晶体结构图上可以看出,配合物 Co[Pz (COO)COOH]: · 2H2O 是由两个 2,3-吡嗪二甲 酸为配体的单核配合物,Co(I)分别与两个 Pzdc 配体上的羧酸氧和氮以及两个水分子中 的氧形成八面体结构,该分子存在穿过Co(Ⅰ) 的 C₂ 对称轴。配体的羧酸与其 Co(Ⅱ)的距离 (Co-O(1))为 2.051 Å。C(5)-O(1)的距离为 1.246(4) Å, C(5)-O(2)的距离为 1.258(4) Å,这两个距离很相近,说明羧酸的三个原子 0-C-0 之间存在某种程度的共轭使 C-0 键长 发生了平均化。在 Pzdc 的两个羧酸氧 O(2)、O (3)之间存在着氢原子 H(1),O(2)-H(1)的距 离为1.21(4) Å, O(3)-H(1)的距离为1.22 (4) A, 这说明 Pzdc 中两羧酸之间存在着很强 的分子内氢键,另外分子内配位水与羧酸之间 亦存在着氢键相互作用。

2.3 磁化率

配合物 I 和 I 摩尔磁化率温度曲线(X_m-T)与 X_mT-T 曲线分别见图 3 和图 4。

图 1 配合物(1)的晶体结构 Fig. 1 Crystal structure of complex 1

Fig. 2 Composition of the crystal cell for complex I

由图可知,配合物 I 有效磁矩 $\mu_{eff}(\mu_{eff} = \sqrt{8\chi_n T}$ 随温度下降而逐渐变小,表现为反铁磁相 互作用。配合物 I 有效磁矩最初随温度下降而逐渐变小,当T=35 K时,却突然增大直到 T=25 K时为止,然后又突然下降,由此可以认为,该配合物在T>35 K 时,表现为弱反铁磁相 互作用。

图 3 配合物(I)的变温磁化率曲线

图 4 配合物(Ⅱ)的变温磁化率曲线

Fig. 4 Temperature dependence of X_m and X_mT for complex 1

2.4 讨论

上述结果表明,在 Pzdc 与 Co²⁺ 离子的反应中,介质的 pH 值对生成的配合物的结构影响很大。Pzdc 是一个二元弱酸,在水溶液中,一级电离相对比较容易发生,一级电离形成的产物 [Pz(COO)COOH]⁻ 相邻的两个羧基间容易形成内氢键,因此二级电离比较困难。所以当 Pzdc J.

第 14 卷

与Co(NO₃)₂・6H₂O在水溶液中反应时,常常形成 Pzdc 与 Co²⁺之比为1:1的单核配合物,这已 被配合物 I 的晶体结构所证实。当在碱性介质中反应时,Pzdc 上两个羧基都发生了电离,因而 生成了没有内氢键的配合物(配合物 I)。由磁化率数据计算得配合物 I 的 $\theta = -9.59$ K,根据 居里-外斯定律,表明该配合物存在弱的反铁磁相互作用,因而可能为一维链状结构。当 Pzdc 在 HClO₄ 水溶液中反应时,红外和元素分析结果证实 Pzdc 和 ClO₄-均参与了配位,同时 Pzdc 的羧基间存在内氢键。从磁化率数据判断($\theta = -9.46$ K,弱反铁磁相互作用),该配合物(II)可 能为一维链状结构。最终结果正在进一步研究之中。

参考文献

[1]Kahn, O. Molecular Magnetism, VCH; Weinhein, Germany, 1993.

Milher, J. S.; Epstein, A. J. Angew. Chem. Int. Ed. Engl., 1994, 33, 339.

[2]Baumann, J. A.; Salmon, D. J.; Wilson, S. T.; Meyer, T. J. hurg. Chem., 1979, 18, 2472.

Darriet, T. ; Haddad, M. S. ; Duesler, E. N. ; Nerdrickson, D. N. Inorg. Chem. , 1979, 18, 2679.

[3]Doeders, R. J. Prog. Inorg. Chem., 1976, 21, 209.

[4]Burriel, R.; O'Connor C. J.; Carlin, R. L. Inorg. Chem., 1985, 24, 3706.

[5] Org. Synth. (Collecture Vol. 5). P. 1824.

[6]Prryan, R.F.; Greene, P.T.; Newlands, M.J.; Field, D.S. J. Chem. Soc., A. 1970, 3068.

SYNTHESIS AND STRUCTURE OF 2,3-PYRAZINEDICAROXYLATE COBALT(I) COMPLEX

Hu Xiaodong Xu Zheng

(Coordination Chemistry Institute, Nanjung University, Nanjung 210093) Zou Jianzhong (Department of Chemistry and Chemical Engineering, Southeast University, Nanjung 210096)

Three new 2, 3-pyrazinedicarboxylate cobalt (I) complexes with different compositions have been synthesized by the reaction of 2, 3-pyrazinedicarboxylic acid (Pzdc) with cobalt (I) nitrate or cobalt (I) perchorate under different pH media and characterized. By X-ray diffraction method, we have determined the crystal structure of $Co[Pz(COO)COOH]_2 \cdot 2H_2O$. It shows that the cobalt atoms located in the octahedral coordination which is composed of two nitrogen atoms and two oxygen atoms from Pzdc and two oxygen atoms from water molecules. Meantime, we measured the magnetic property of $CoPz(COO)_2 \cdot 4H_2O$ and $CoPz(COO)COOH(ClO_4) \cdot 4H_2O$. There are weak antiferromagnetic interaction in both the two complexes.

Keywords; Pzdc cobalt(1) complex crystal structure magnetic susceptibility