	60) 477-491	维普资讯	http://www.cqvip.com
第4期	L T L T L T L T L T L T L T L T L T L T	Vol. 14, No. 4	
<u>1998年12月</u>	JOURNAL OF INORGANIC CHEMISTRY	Dec., 1998	=
《研究简报》			
Conner			
<u>µ</u> -早聞	先一胺 Cu(I)-Fe(I) 双核配合物的合	家人与磁性	
ul 12	李延团*! 焉翠蔚2 ↓ 韩庆奎! 廖代正3	\checkmark	
0141101			
('曲阜);	币范大学化学系,曲阜 273165;°曲阜师范大学生物系,1	曲阜 273165;	
(110.81)	³ 南开大学化学系,天津300071)		
017:01			
6 .h ~ +			

合成和表征了两种含草酰胺桥的新型异双核配合物[Cu(oxae)Fe(tmen)₂]SO₄(\mathbf{a})和[Cu(oxpn)Fe (tmen)₂]SO₄(\mathbf{b})。变温磁化率(4~300K)测量和磁分析表明两个 Cu(\mathbf{I})-Fe(\mathbf{I})双核配合物中金属 离子间有中等强度的反铁磁超交换作用。

χ铁磷起交换 <u>草酰胺桥</u> 异双根配合物 Cu(I)-Fe(I) 碰性

由于草酰胺根有效的多原子成桥功能,有关含草酰胺桥的双核配合物的研究已有许多论 文与评述发表^[1~3]。为了给该桥基提供新的实例,进而研究 Cu(I)配位环境对异核配合物磁 交换作用的影响,本文报道用 N,N'-双(2-氨乙基)草酰胺合铜[Cu(oxae)]和 N,N'-双(3-氨丙 基)草酰胺合铜(I)[Cu(oxpn)]作为双齿配体合成出的两个新的铜(I)-铁(I)双核配合物 [Cu(oxae)Fe(tmen)₂]SO₄(a)和[Cu(oxpn)Fe(tmen)₂]SO₄(b),并研究了其磁性。结果表明 Cu (I)离子周围环结构的稳定性对金属离子间的磁交换作用有显著的影响。

1 实验部分

()

()

1.1 主要试剂与仪器

合成和测试中所用试剂除 N,N,N',N'-四甲基乙二胺(tmen)为化学纯外其余均为分析纯 试剂。FeSO4•7H₂O 按常规方法重结晶后使用。N,N'-双(2-氨乙基)草酰胺合铜[Cu(oxae)]和 N, N'-双(3-氨丙基)草酰胺合铜(I)[Cu(oxpn)]按文献[3]方法合成。主要仪器有 Perkin-Elmer 240型元素分析仪,Nicolet FT-IR 5DX 红外光谱仪测定(KBr 压片),岛津 UV-240型双光道分光 仪测定(DMF 溶液)。DDS-11A 型电导率仪。金属含量用 EDTA 容量法测定。室温磁化率用 Faraday 法,以摩尔盐为基准物。变温磁化率采用 CF-1提拉样品磁强计测定,抗磁部分用 Pascal 常 数校正,有效磁矩采用公式 $\mu_{ttr}=2.828(\chi_m T)^{1/2}$ 计算。

1.2 [Cu(oxae)Fe(tmen),]SO,(a)和[Cu(oxpn)Fe(tmen),]SO,(b)配合物的合成

两个双核配合物的合成方法类似,以[Cu(oxae)Fe(tmen)₂]SO₄(a)的合成为例:在搅拌下, 往235.7 mg(1 mmol)的[Cu(oxae)]甲醇悬浮液(5 ml)中逐滴加入10 ml 含278 mg(1 mmol)

- * 通讯联系人。
- 第一作者、李延团,男,36岁,教授;研究方向、配位化学。

收稿日期:1997-09-01。 收修改稿日期:1998-03-05。

山东省青年自然科学基金和国家自然科学基金资助项目。

• 479 •

FeSO₄•7H₂O的甲醇溶液,得紫红色溶液。向该溶液中加入232 mg(2 mmol)冷 tmen 甲醇溶液15 ml,溶液的颜色立刻变成蓝紫色并有少量沉淀析出。在高纯度的 N₂保护下继续搅拌8 h,过滤,和甲醇、H₂O 和乙醚洗涤多次,真空干燥得蓝紫色微晶产物。元素分析结果见表1。 用

2 结果与讨论

2.1 组成与结构表征

ŀ

元素分析结果表明,单核配合物[Cu(oxae)]和[Cu(oxpn)]分别与 FeSO,•7H₂O 和 tmen 按1 :1:2摩尔比反应形成了预期的双核配合物(a)和(b)。配合物的重要数据示于表1。从表1的红外 光谱数据可见,当形成 Cu(I)-Fe(I)双核配合物后,原单核配合物配体[Cu(oxae)]和[Cu(oxpn)]中的羰基振动吸收均发生了不同程度的蓝移,这是由于在双核配合物中羰基的键能比相 应单核配体高所致,是形成草酰桥联结构的有力佐证^[1]。另外,在双核配合物的红外谱图上,单 核断片中的-NH₂振动吸收峰仍存在。然而,单核配合物中的羰基在720 cm⁻¹处的弯曲振动峰已 消失。这些事实说明单核配合物配体中草酰二胺上的羰基氧原子与 Fe(I)配位形成了 Cu (I)-Fe(I)双核配合物^[4]。此外,未配位的 SO²特征峰^[5]在两个双核配合物的 IR 谱图上均有 表征。两个双核配合物在 DMF 中的摩尔电导测定值(见表1)均落在1:1离子型配合物的范 围^[6],说明 SO²离子处在配合物的外界,从而进一步证实了红外的测定结果。

表1	記合	物的元素分析及物理数据	
----	----	-------------	--

	ele	emental	analyses (calc.)(%	6)	∧să (S∙cm² •mol ^{−1})	₄₋₁₁ (В. М.)	lR (cm ⁻¹)			UV		
complex	с	н	N	Fe	Cu			NH2	C=0	soi-	−ν(nm)/e _m d-a	ıx(mol− t	·•cm ⁻ ·L) CT
Cu(oxae)								3250	1615		535		
Cu(oxpn)								3175	1585		613		
(a)	34.69	7.04	17.86	8.89	10.09	82	4. 26	3250	1655	1120	540	870	355
	(34.87)	(7.15)	(18.07)	(9.01)	(10.25)						(200)	(10)	(19500)
(b)	36.90	7.32	17、10	8.41	9、70	86	4. 98	3175	1645	1120	617	875	340
	(37.07)	(7.46)	(17.29)	(8.62)	(9,80)						(210)	(15)	(21600)

Ta	ble	e 1	E	lement	ial ,	Anal	yses	and	Physi	ical	Data	of	the	Comp	exe
----	-----	-----	---	--------	-------	------	------	-----	-------	------	------	----	-----	------	-----

两种双核配合物在 DMF 溶液中的电子光谱均观察到三个吸收峰(见表1)。其中在长波区的弱吸收宽带540 nm(或617 nm)应归结为双核配合物中具有平面结构环境的 Cu(I)离子的 d-d 跃迁^[7],与相应的单核配合物[Cu(oxae)]或[Cu(oxpn)]的 d-d 跃迁(见表1)相比,形成双核 配合物后 Cu(I)离子的 d-d 跃迁发生了红移,这种 d-d 跃迁频率的红移可能是由于羰基与 Fe(I)离子配位后而使生色基[CuN4]的平面度降低所致^[4]。另外一个更弱的谱带870 nm(或 875 nm)是处于八面体环境中高自旋 Fe(I)离子的⁵T₂₄→⁵E,特征跃迁频率^[7]。在短波区出现的 强带可指派为对称性允许的荷移带,其具体归属尚有待于今后类似配合物的波谱数据的积累 与解析。

基于以上元素分析、波谱表征以及类似配合物的 X-射线结构测定^[2]可初步推断本文报道 的配合物具有图1所示的草酰胺桥双核结构。

图1 配合物配位环境

2.2 配合物的自旋磁交换作用

两个双核 Cu(I)-Fe(I)配合物的实测室温磁矩(见表1)均小于纯自旋值(5.20 B.M)表 明配合物中 Cu(I)和 Fe(I)间存在反铁磁自旋交换作用。为了定量说明这种磁交换作用的大 小,进一步测定了两个双核配合物的变温磁化率(4~300 K)(见图2),使用包含 Fe(I)离子轴 向零场分裂参数(D)的 Heisenberg 模型,即用 $\hat{H} = -2J\hat{s}_1 \cdot \hat{s}_2 - D\hat{s}_2$ 对数据进行了理论分析和计 算。由此算符可推导出 Cu(I)-Fe(I)(Scu=1/2, Sre=2)双核体系的理论磁化率方程(1)^[9]:

$$X_{M} = \frac{N\beta^{2}g^{2}}{4kT} \Big[\frac{25\exp(A) + 9\exp(B) + \exp(C) + \exp(E)}{\exp(A) + \exp(B) + \exp(C) + \exp(G) + \exp(E)} \Big]$$

$$A = (35J + 4D)/kT,$$
(1)

 $B = \left[\frac{25J}{4} + \frac{5D}{2} + \frac{(25J^2)}{4} - \frac{9DJ}{2} + \frac{9D^2}{4} \right]^{1/2} / kT,$

 $C = \left[\frac{25J}{4} + \frac{D}{2} + \frac{(25J^2)}{4} - \frac{DJ}{2} + \frac{D^2}{4} \right]^{1/2} \frac{1}{kT},$

 $G = \left[\frac{25J}{4} + \frac{5D}{2} - \frac{(25J^2)}{4} - \frac{9DJ}{2} + \frac{9D^2}{4} \right]^{1/2} \frac{1}{kT},$

 $E = \left[\frac{25J}{4} + \frac{D}{2} - \frac{(25J^2}{4} - \frac{DJ}{2} + \frac{D^2}{4} \right]^{1/2} / kT$

正如图2所示,用最佳拟合技术可使变温 磁化率和磁矩的实测值与理论值取得很好地 拟合, 拟合因子 $F = \Sigma [(\chi_M)_{obs} - (\chi_M)_{calc.}]^2 /$ $\Sigma(X_{M})_{obs}$ 只有1.8×10⁻¹。经最佳拟合过程得到 的磁参数分别为: [Cu (oxae) Fe (tmen)2] SO4 (a): $J = -75.69 \text{ cm}^{-1}$, g = 2.02, D = -1.18 cm^{-1} ; [Cu (oxpn) Fe (tmen)₂]SO₄(b); J = -18.58 cm⁻¹, g=2.04, D=-1.26 cm⁻¹(配合 物 b 的变温磁化率和磁矩图略)。交换积分 J 的符号和数值说明在双核配合物中 Cu(Ⅰ)和 Fe(I)离子间有中等程度的反铁磁超交换作

用。根据类似配合物^[2]的 X-射线测定结果,如将本文报道的 Cu(I)-Fe(I)双核配合物近似视 为 C2、点群,则 Cu(I)的单电子占据 dxy轨道,属 bi对称性,而 Fe(I)的四个单电子分占 ai(d2, d_{x²-y²}), a₂(d_{yx}), b₁(d_{xy})和 b₂(d_{zx})轨道,由于<b₁(Cu)|b₁(Fe)>≠0,所以通过草酰胺桥,两个磁 轨道会发生重叠,故 Cu(I)与 Fe(I)之间将产生反铁磁相互作用。

配合物(a)和(b)两者的主要差别在于铜(I)离子周围螯合环的排布不同。由图1可见,配

合物(a)中 Cu(I)离子周围环的排布为5-5-5结构,而配合物(b)中 Cu(I)离子周围环的结构 为6-5-6排布,从而导致了配合物(a)的反铁磁交换作用比配合物(b)大得多。文献[1]已报道, 在草酰胺桥联的双铜(I)配合物中,Cu(I)离子周围环结构的稳定性与金属离子间的磁交换 作用大小有对应关系,环结构愈不稳定,愈有利于金属离子间的磁交换作用。这种对应关系也 出现在本文报道的 Cu(I)-Fe(I)异双核体系中,即螯合环6-5-6排布的稳定性高于5-5-5排布 的稳定性,所以配合物(a)的反铁磁交换作用比配合物(b)大。

参考文献

- [1] Ojima, H.; Nonoyama, K. Coord. Chem. Rev., 1988, 92, 85.
- [2] Zhang, Z. Y.; Liao, D. Z.; Jiang, Z. H.; Hao, S. Q.; Yao, X. K.; Wang, H. G.; Wang, G. L. Inorg. Chem. Acta, 1990, 173, 201.
- [3] Jouranaux, Y.; Sletten, J.; Kahn, O. hurg. Chem., 1985, 24, 4063.
- [4] Li, Y. T.; Liao, D. Z.; Jiang, Z. H.; Wang, G. L. Polyhedron, 1995, 14, 2209.
- [5] Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4rd. Edit, Wiley: New York, 1986.
- [6] Geary, W. J. Courd. Chem. Rev., 1971, 7, 81.
- [7] Lever, A. B. P. Inorganic Electronic Spectroscopy, Elsevier: Amsterdam, 1984.
- [8] Sinn, E. Coord. Chem. Rev., 1970, 5, 313.
- [9] Lambert, S. L.; Spiro, C. L.; Gagne, R. R.; Hendrickson, D. N. Inorg. Chem., 1982, 21, 68.

THE SYNTHESES AND MAGNETIC PROPERTIES OF μ -OXAMIDO HETEROBINUCLEAR COPPER(I)-IRON(I) COMPLEXES

Li Yantuan¹ Yan Cuiwei² Han Qingkui¹ Liao Daizheng³

(¹Department of Chemistry, ² Department of Biology, Qufu Normal University, Qufu 273165; ³Department of Chemistry, Nankai University, Tianjin 300071)

Two new μ -oxamido heterobinuclear complexes $[Cu(oxae)Fe(tmen)_2]SO_4(a)$ and $[Cu(oxpn)Fe(tmen)_2]SO_4(b)$ have been synthesized and characterized, where tmen stands for N, N, N', N'tetramethylenediamine; oxae and oxpn represent N, N'-bis(2-aminoethyl)oxamido dianion and N, N'bis(3-aminopropyl)oxamido dianion, respectively. The temperature dependent-mangnetic susceptibilities of two complexes have been studied over the range $4 \sim 300$ K, and the exchange integral J is found to be -75.69 cm⁻¹ for (a) and -18.58 cm⁻¹ for (b), on the basis of spin Hamiltonian $\hat{H} =$ $-2J\hat{S}_1 \cdot \hat{S}_2 - D\hat{S}_{21}^2$. The results are commensurate with moderately strong antiferromagnetic superexchange interactions between the metal ions.

Keywords: oxamido-bridge heterobinuclear complex copper(I)-iron(I) magnetism