Vol 15, No. 1 Jan., 1999

2、2'-(1,2-亚乙基双氮次甲基)二喹啉及其 Cu²⁺、Zn²⁺、

 Ni²⁺、Mn²⁺配合物的合成与表征

 0614(12)
 卢会杰^{*} 樊耀亭^{**} 林 钰^b 周正氏^{*} 刘 冰^{***}

 (* 郑州大学化学化工学院, 郑州 450052)

 (*河南省教育学院化学系, 郑州 45003)

本文报道 2,2'-(1,2-亚乙基双氯次甲基)二喹啉及其与 Cu²⁺、Zn²⁺、Ni²⁺、Mn²⁺配合物的合成,并通过元素分析、红外光谱、紫外光谱、X-射线粉末衍射、热分析及核磁共振等手段对配体和配合物进行了表征。配合物的化学组成为 M. L. (ClO₄): + H₂O(M = Cu²⁺、Zn²⁺、Ni²⁺、Mn²⁺离子;L = C₂₂H₁₈N₄)。 与司 年 与 与 与

二°奎味木衍生华初 关键词: 2.2'-(1.2-亚乙基双氮次甲基)二零啦 过渡金禺 配合物 分类号: 0614.12

> 近年来的研究表明,某些 Schiff 碱金属配合物具有仿酶催化活性,在仿酶催化剂的合成及 应用方面占有重要地位^[1];一些芳香胺类衍生物与金属离子的配合物具有荧光性质^[2],有的还 呈现一定的生物活性^[3],由此而引起人们浓厚的研究兴趣^[1-6]。迄今,人们已对水杨醛及吡啶 类衍生物与胺的 Schiff 碱金属配合物进行了较多的研究^[1],但关于喹啉及其衍生物的 Schiff 碱 金属配合物的研究则未见报道。我们以喹啉-2-甲醛和乙二胺为原料合成了 2,2'-(1,2-亚乙基 双氮次甲基)二喹啉 Schiff 碱配体及其与 Cu²⁺、Zn²⁺、Ni²⁺、Mn²⁺离子的配合物,并用元素分 析、红外光谱、紫外光谱、X-射线粉末衍射物相分析、热分析及核磁共振等手段对配体及配合 物进行了表征。配体的结构示于图 1.

图 1 配体的分子结构

Fig. 1 Molecular structure of the ligand

1 实验部分

1.1 试剂与仪器

金属高氯酸盐由相应的金属氧化物和高氯酸反应制得。试验所用其他试剂均为分析纯。

- ★ 邇讯联系人,
- ◆ 现在河南省新郑市化工材料厂工作。
 第一作者:卢会杰、35岁、副教授;研究方向:有机台成。

收稿日期:1997-06-09。 收修改稿日期:1998-04-14, 河南省自然科学基金资助课题(No. 984032400)。

碳、氢、氮含量在 Perkin-Elmer 240B 型元素分析仪上测定;红外光谱用岛津 IR-450 型红外 光谱仪测定;X-射线粉末衍射用日本理学 D/MAX-3B 型 X-射线衍射仪测定;摩尔电导用 DDS-11A 型电导率仪进行测定;热分析用日本理学热分析仪测定;核磁共振用 BRUKER FT-80M 型 核磁共振仪进行测定,以氘代二甲亚砜为溶剂,TMS 为内标。

1.2 **配体的合成**

取新鲜制备的二氧化硒 12.5 g(0,113 mol)溶于 100 mL 二氧六环中,搅拌下缓缓加入由 14.3 g(0.1 mol)2-甲基喹啉和 20 mL 二氧六环组成的溶液。搅拌、加热、回流 1.5 小时。冷却 过滤、除去硒渣,用少量二氧六环洗涤硒渣。合并滤液,水浴加热并减压蒸出二氧六环,得粘稠 状残留物。将残留物进行水蒸气蒸馏,馏出液充分冷却后,析出白色雪花状晶体。过滤得到喹 啉-2-甲醛 11.0 g(收率 70%),熔点 71 C,与文献值相符^[7]。

将 4.68 g(0.03 mol) 喹啉-2-甲醛溶于 25 mL 乙醇中,搅拌下缓缓加入由 0.9 g(0.015 mol) 乙二胺和 5 ml 乙醇组成的溶液,加毕回流 30 分钟。冷却过滤,固体用适量乙醇重结晶得 到白色片状结晶 2,2'-(1,2-亚乙基双氮次甲基)二喹啉 3.8 g(收率 75%),熔点 132 C。配体的 结构已由元素分析、IR 及'H NMR 谱所证实。

1.3 配合物的制备

将等摩尔的 2,2'-(1,2-亚乙基双氮次甲基)二喹啉配体(L)和相应的金属高氯酸盐分别溶 于适量的四氢呋喃中,在搅拌和加热条件下,将金属高氯酸盐的四氢呋喃溶液逐渐滴加到配体 的四氢呋喃溶液中去,逐渐有沉淀生成。继续回流搅拌 6 小时后,将溶液冷却过滤,用四氢呋喃 充分洗涤固体物质,产物置于放有五氧化二磷的干燥器中真空干燥。

2 结果与讨论

2.1 配合物的组成

配体和配合物的元素分析数据列于表 1。根据元素分析结果和光谱分析所提供的信息,推 测配合物的组成为 M. L. (CtO₄)₂ · H₂O(M=Cu²⁺, Zn²⁺, Ni²⁺, Mn²⁺; L=C₂₂H₁₈N₁)。

compound	color	C %	H %	N %	M ! j
$C_{12}H_{18}N_4(L)$	white	78.19(78.11)	5.39(5.33)	16.56(16.57)	
$C_{u} \bullet L \bullet (ClO_{1}) \bullet H_{2}O$	light green	42.57(42.68)	3.22(3.23)	9.02(9.05)	10.53(10.27)
$\mathbf{Z}_{n} \cdot \mathbf{L} \cdot (C \mathbf{O}_{1})_{2} \cdot \mathbf{H}_{2}\mathbf{O}$	light yellow	43.85(43.85)	3.02(2.99)	9.37(9.30)	10.16(10.54)
$Ni + L + (ClO_4)_2 + H_2O$	orange	43, 12(43, 02)	3.39(3-25)	9.07(9.13)	10-03(9,56)
$Man + L + (ClO_4)_2 + H_2O$	brown	43. 17(43.28)	3.41(3.28)	9, 42(9, 18)	9,27(9,18)

表 1 元素分析数据 Table 1 Data of Elemental Analysis (Data in Brackets are Calculated Values)

2.2 红外光谱

配体及配合物的红外光谱数据见表 2。结果表明,自由配体中碳氮双键在 1639 cm⁻¹处的 伸缩振动吸收峰,在配合物中发生了分裂、分别出现在 1660~1670 cm⁻¹和 1640~1646 cm⁻¹范 围内。喹啉环在 1590 cm⁻¹和 1498 cm⁻¹处的骨架振动有较小程度的蓝移,但在 1590 cm⁻¹处的 吸收峰强度明显增加,另外,形成配合物后喹啉环上碳氢键的变形振动吸收(820, 740 cm⁻¹) 及 1,2-亚乙基的变形振动吸收(1460, 1420 cm⁻¹)均呈现不同程度的蓝移,这表明配体中所有

第15卷

复原子都参与了配位。

表 2 配体及配合物的主要红外光谱数据

Table 2 Data of Infra-Red Spectra of Ligand and Complexes

	Т	able 2	Data of	Infra-F	led Spec	tra of L	igand a	nd Compi	exes		cm - '
compound		C – N		Paing		⁴ сн _г	á	-H(ung)	о _с нч	100	δ _{ει0} _
$C_{22}H_{10}N_1(L)$	1639		0651	1498	1460	1420	820	740			
Cu + L + (ClO ₁)₂ + H₂D	1670	1635	1590	1505	1465	1438	835	755	3440	1110	628
$Zn \bullet L \bullet (ClO_4)_2 \bullet H_2O$	1665	1642	1592	1501	1462	1430	829	750	3431	0111	632
$N(\bullet (CO_1)_2 \bullet H_2O$	1667	1642	1590	1510	1460	1431	825	759	3415	1110	623
$Mn \bullet L \bullet (ClO_4)_2 \bullet H_2 O$	1660	1640	1597	1502	1461	1430	838	745	3427	1110	603

所有配合物的红外光谱分别在 1110 cm⁻⁻¹和 622~628 cm⁻⁻¹处(强的宽吸收和中强吸收峰) 呈现具有 Td 对称性的高氯酸根的特征吸收峰,表明高氯酸根没有参与对金属离子的配位,由 此推测、中心离子应处于四配位的环境中。另外,配合物的红外光谱在3415~3440 cm⁻¹范围内 还出现了羟基的强吸收峰,说明配合物中有水分子存在,这与元素分析及热分析的结果是一致 的。

2.3 紫外光谱

配体及配合物在乙腈溶液中的紫外光谱数据列于表 3。实验结果表明,配体中属于 π→π* 跃迁的吸收峰(239 nm)在形成配合物后均发生不同程度的紫移(4~9 nm),而配体中属于 a→ π'跃迁的吸收峰(288 nm),除锰的配合物外,在诸配合物中均出现较大的红移。形成配合物前 后紫外光谱的变化也为配合物的形成提供了信息。

表 3 配体及配合物的紫外光谱和摩尔电导数据

Table 3 Data of UV Spectra and Molar Conductance of Ligand and Complexes

compound		(- w	_im/
	A _{ID} a	7 AUI	S • cm ² • mol ^{−1}
$C_{12}H_{18}N_4(L)$	239	248	41
$Cu + L + CO_1 c + H_2 O$	230	335	149
$Zn + L + (ClO_1)_2 + H_2O$	231	324	147
$N_1 + L + (CO_4)_2 + H_2O_4$	235	330	111
$Mn + L + (C(O_1)_2 + H_2O)$	233	291	153

2.4 N-射线粉末衍射分析

配体及其铜、锌配合物的 X-射线粉末衍射分析数据列于表 4。由表 4 数据可以看出,配合 物的 X-射线粉末衍射数据不同于配体,也不是配体和相应金属盐衍射峰的叠加,说明已有新 的物种形成。

表 4 配体及配合物的 X-射线粉末衍射数据

Table 4	Data of	X-Ray	Powder	Diffraction	for	the	Ligand	and	Complexes
---------	---------	-------	--------	-------------	-----	-----	--------	-----	-----------

$C_{12}H_{18}N_4(L)$	ď/nm	1.725	0.863	0.575	D. 431	0.345	0. 288	0.246	0.191		
	I/I_0	25	100	9	9	11	1	12	4		
$Z\mathbf{n} \bullet L \bullet (ClO_1)_2 \bullet H_2O$		1.175	0.626	Ū. 481	0.468	0.446	Ŭ. 405	0.386	0.359	0.342	0.333
	$1/I_{0}$	98	69	56	57	59	56	67	51	100	57
$\mathbf{C}\mathbf{u} \cdot \mathbf{L} \cdot (\mathbf{C} \mathbf{O}_4)_2 \cdot \mathbf{H}_2\mathbf{O}$	d/nm	1.175	0.769	0.635	D. 526	0.481	0.438	0.418	0.412	0.385	0.353
	1/10	79	83	81	100	67	61	53	64	48	ទម

表 5 为配体和配合物的热分析数据。结果表明,自由配体在 DTA 曲线上于 132 C呈现尖锐的吸热峰,但在 TG 曲线上没有相应的失重发生,相应于配体熔化的结果。其后,配体在 DTA 曲线上分别在 224 C和 528 C时出现两个大的放热峰,并在 TG 曲线上伴有相应的失重过程, 至 650 C附近失重趋于完全,相应于配体的逐级氧化分解过程。配合物的热分解过程不同于配体,诸配合物均在 100 C前失去水分子,其后在 DTA 曲线上分别于 220~250 C,305~334 C和 530~550 C的温度区间内出现强度不等的放热峰,并在 TG 曲线上伴有相应的失重过程,相应 于诸配合物的逐级氧化分解过程。将诸配合物升温至 800 C,由总失重率推测其热分解的最终 残留物为相应的金属氧化物(表 5)。

compound	endothermic		e cotherm	nc peaks/		loss of	weight / %	
	peaks/ (C			found	caled.	1611 JULIE1
$C_{12}H_{13}N_{1}(L)$	132	224	528			99	(100)	
$C_{u} \bullet L \bullet (ClO_1)_2 \bullet H_2O$	82	268	335			87.5	(87, 14)	CuO
$Z_{II} \bullet L \bullet (C O_1)_1 \bullet H_2O$	80	254	312	461	568	88.22	(86,88)	ZnO
$N_1 \star L \star (C(O_4)_2 \star H_2O$	76	280	421	187	549	89.85	(87.53)	N/O
$Mn \bullet L \bullet (C(O_1)_2 \bullet H_2O$	84.5	223	335	436	530	86.51	(85.74)	MnO ₂

表 5 配体及配合物的热分析数据 Table 5 Data of Thermal Analysis for the Ligand and Complexes

2.6 核磁共振(¹H NMR)谱

在氘代二甲基亚砜溶剂中测定了配体和锌配合物的⁴H NMR 谱。配体在 7.28~8.16 ppm 处给出的多重峰,相应于喹啉环上的氢:在 4.17 ppm 处给出的单峰,相应于 1,2-亚乙基上的 氢:在 8.61 ppm 处给出的单重峰,相应于氮次甲基上的氢;三组峰的积分面积之比为 6:2: 1,与相应的各组质子数目之比相吻合。在锌配合物中相应于配体在 7.27~8.15 ppm 处的多重 信号峰和 8.61 ppm 处的单峰分别向低场发生位移至 7.58~8.54 和 8.63 ppm 处,这表明形成 配合物后,喹啉环及其与之相连的氮次甲基上电子云密度有所降低;相应于 1.2-亚乙基在 4.17 ppm 处的信号峰向高场发生了位移,出现在 4.14 ppm。配体和配合物均出现了 2.51 ppm 处的溶剂峰和 3.39 ppm 处的水峰,配合物中水的信号峰和溶剂中水的信号峰重迭,这也说明 水分子没有参与对金属离子的配位。

2.7 摩尔电导和溶解度

配合物在 DMF 溶液中(1.0^{-,} 10^{-,} mol·1^{-,})的摩尔电导值出现在 141~153 S·cm·· mol⁻¹(表 3)的范围内,表明配合物在该溶剂中均为 1:2 型的电解质^[8],但配合物在乙腈溶液 中(0.5[,] 10^{-,3} mol·1^{-,1})的摩尔电导值则出现在 30~50 S·cm²·mol⁻¹,说明配合物在不同溶 剂中呈现不同的电解质行为。

配合物溶于 DMF、DMSO 及吡啶中,不同程度的微溶于甲醇、乙醇、丙酮、乙腈及四氢呋喃 中,难溶于水、乙醚及苯中。

参考文献

- [1] YU Xiao-Qi(余孝其), LAN Zhong-Wei(蓝仲薇) Zaran Zarda (Chanese J. Nature), 1988,11(12),899.
- [2] TAN Min-Yu(谭民裕), TANG Ning(唐 宁) Goodeng Xuexuao Huaxue Xuebao. (Chemical Journal of Chanese Inversity), 1985, 6(?), 5??.
- [3] Healy A. D. S. et al Advances in hung. Chem. and Radiochem., Acadamic Press, 1978, 21, 1.
- [4] FAN Yao-Ting(樊耀亭), LIU Chang-Rang(刘长让), TAN Min-Yu(谭民裕) He Xuarue Yu Fangshe Huarve(Chinews J. Nucl. Raduchem.), 1992, 14(3), 154.
- [5] FAN Yao-Ting(樊耀亭), TAO Jing-Chao(陶京朝), TAN Min-Yu(谭民裕) et al He Xintzine Yu Fongshe Huazine (Chancese J. Nucl. Raducchem.), 1988,10(1),52.
- [6] Karaynnis N. M., Speca A. N., Chasan D. E. Courd. Chem. Rev., 1976, 20, 37.
- [7] Ductionary of organic companies, Published by Chapman and Hall, 5th ed., New York, 1982.p4886.
- [8] Geary W. J. Coordination Chemistry Reviews, 1071,7,105~107.

SYNTHESIS AND CHARACTERIZATION OF COMPLEXES OF Cu(1). Zn(1), Ni(1) AND Mn(1) WITH SCHIFF BASES LIGAND 2,2'-(1,2-ETHYLENEBISNITRILOMETHYLIDYNE) DIQUINOLINE

LU Hui-Jie FAN Yao-Ting LIN Yu ZHOU Zheng-Ming LIU Bing (School of Chemistry and Chemical Engineering, Zhengzhou University, Zhengzhou 450052)

The title complexes $M \cdot L \cdot (ClO_4)_2 \cdot H_2O(M = Cu^{2+}, Zn^{2+}, Ni^{2+}, Mn^{2+}; L = C_{22}H_1N_2)$ were synthesized by the Schiff bases ligand derived from quinoline-2-formaldehyde and ethylene diamine. The new compounds were characterized by elementary analysis, IR, UV, ¹H NMR spectra Xray powder diffraction and thermoanalysis.

Keywords:guinoline-2-formaldehydetransition metal complex $2, 2^{\prime} - (1, 2-$ ethylenebisnitrilomethylidyne) diquinoline