维普资讯 http://www.cqvip.com

0627.25 徐 昕 邹建忠 叶 蕾 丁晓峰 潘 毅*

(南京大学化学系,南京 210093;**东南大学应用化学系,南京 210096)

通过轴向配位作用构造了 ZnTPP-H:(m-py)TPP 卟啉二元体系,研究了配位二聚体的可见吸收 光谱和荧光发射光谱特性,考察了二聚体分子内的能量传递过程,观察到能量从激发态ZnTPP 流 向 H₂(m-py)TPP。作为对比、研究了 ZnTPP-py 体系的可见吸收光谱和荧光发射光谱。轴向配位的毗 啶引起了 ZnTPP 荧光光谱明显红移,没有分子内的能量转移过程发生。用吸收光谱和荧光光谱方法 计算了加合反应的平衡常数、得到了基本一致的结果。 小呔太

卟啉及其衍生物在光合作用、生命过程^[1]和高新技术^[2]中起着重要的作用。卟啉二元体系 分子内的能量传递和电子传递在光合作用反应中心的电荷分离过程中占有重要地位。搞清这 些过程,对设计人工的太阳能转换体系具有特别重要的意义。

尽管已经合成了许多卟啉环共价键相联的模型分子⁽³⁾,但以配位键相联的卟啉二聚体却 研究得很少问,这是合成模型化合物的一条新的路线,值得进行深入研究。以配位键相联的叶 啉二元体系将会产生一些新的结构和有趣的光电性质。作为配位键相联的卟啉二聚体模型分 子,本文报道了5,10,15,20-四苯基卟啉锌(简记为ZnTPP)和5-吡啶基-10,15,20-三苯基卟啉 (简记为 H₂(m-py)TPP)之间的配位二聚反应及二聚体的基态吸收光谱和荧光光谱,讨论了分 子内的能量流动。作为对比,同时研究了 ZnTPP 与吡啶体系的光谱特征。

实 鲙 1

第丁期

1.1 试剂

所用试剂均按常规方法进行纯化处理。

1.2 测试仪器

C、H、N 元素分析使用 Perkin-Elmer 240C 型元素分析仪测定。可见紫外吸收光谱用日本岛 津 UV-240 型分光光度计测量。荧光光谱在 Perkin-Elmer5050 型荧光光谱仪上测量。

1.3 化合物合成和纯化

- '通讯联系人。
 - 第一作者;徐 研,男,28岁、工程师;研究方向;从事催化、配位化学和金属有机化学研究、近年来着重研究主族元素 金属有机化学。

收稿日期。1997-12-11。 收修改稿日期:1998-03-15。

H:TPP、ZnTPP 和 H:(*m*-py)TPP 按文献^[3]方法合成,并经柱层析分离纯化。它们的氯仿溶 液的可见紫外吸收光谱:H₂TPP(419,516,550,590,647 nm);ZnTPP(422,546,598 nm); H₂(*m*-py)TPP(418,514,548,589,644 nm)。H₂(*m*-py)TPP 元素分析结果如下,括号内为分子 式为 C₄,H₂:N₅ 的理论值:C: 83.2%(83.88);n), H: 4.58%(4.75%), N: 10.92%(11.38%).

2 结果与讨论

2.1 ZnTPP 加合物的基态可见吸收光谱

通过吡啶基与金属卟啉的配位作用生成配位二聚体,作为研究分子内能量传递的模型分子。为了便于对比,首先研究ZnTPP-py和ZnTPP-4、4'-bipy体系的可见光谱特征,然后再考察ZnTPP-H₂(*m*-py)TPP体系的可见光谱特征。

图 1 是 ZnTPP-py 体系的可见吸收光谱, 虚线所示是 ZnTPP 的可见吸收光谱, 有两个吸收 极大,分别位于 544 和 582 nm。加入吡啶后, 544 nm 处的吸收峰下降, 582 nm 的吸收强度不 变,在 598 nm 处产生一个新的吸收峰。随着吡啶浓度的增加,在 544 nm 在吸收强度不断减小, 598 nm 的吸收强度不断增大, 同时在 544 nm 峰的长波长侧出现一个肩峰, 它的强度随着吡啶 浓度的增大而增加, 最后在 558 nm 处形成一个新的吸收峰。与 ZnTPP 的吸收光谱相比、 ZnTPP-py 轴向加合物的可见吸收光谱分别红移了 14 nm(从 544 nm 红移至 558 nm)和 [6 nm (从 582 nm 红移至 598 nm)。从图 1 可以看到,在 550 nm 和 582 nm 处形成了两个等吸收点, 表明 ZnTPP-py 轴向加合物的形成。根据文献^[1]方法可以求得室温下加合反应的平衡常数 $K \approx$ $4 \ge 10^1 mol^{-1} \cdot dm³$ 。

ZnTPP-4,4'-bipy 体系的可见光谱(图 2)有类似的特征。随着 bipy 浓度的增加,ZnTPP 的 544 nm 吸收峰减小,在 560 nm 处出现肩峰,在 598 nm 处出现新的吸收峰。如果 bipy 的浓度继

速 ・ 91・

续增加,则 560 nm 处的肩峰会逐渐增大并发展成新的吸收峰。在 552 nm 和 598 nm 处形成两 个等吸收点,表明有轴向加合物形成。

图 3 是 ZnTPP-H₂(*m*-py)TPP 体系的可见吸收光谱。与吡啶和联吡啶体系不同,没有出现 等吸收点。该体系的吸收光谱好像是 ZnTPP 和 H₂(*m*-py)TPP 吸收光谱的迭加。这可能是由于 H₂(*m*-py)TPP 在可见波段的吸收掩盖了 ZnTPP 加合物光谱的变化所致。轴向化合物的生成已 被类似体系¹"的'H NMR 和晶体结构所证实、也被将在下面讨论的荧光光谱所证实。根据吸光 度的变化、可求得室温下加合反应的平衡常数 $K \approx 2 \times 10^{1}$ mol⁻¹·dm³、与下面从荧光光谱求得 的 K 值一致。

2.2 ZnTPP 轴向加合物的稳态荧光特性

ZnTPP 的室温荧光光谱与 $H_2(m-py)$ TPP 的基态吸收光谱有很大的重迭区域. 根据 Frost 理论, ZnTPP 的激发态能量可以有效地传递给 $H_2(m-py)$ TPP。

 $2nTPP^+ + H_2(m-py)TPP \xrightarrow{k_{ET}} ZnTPP + H_2(m-py)TPP^+$

在氯仿溶液中 ZnTPP 的荧光带中心位于 593 nm 和 640 nm($\lambda_{n} = 547$ nm)。前者的强度大于后者:H₂(*m*-py)TPP 的荧光带中心位于 650 nm($\lambda_{n} = 514$ 和 548 nm)。当用 $\lambda_{n} = 514$ nm 激发 ZnTPP 时,在 593 nm 和 640 nm 处的荧光发射非常微弱。这是由于 ZnTPP 对 514 nm 的激发光 吸收很微弱的缘故。由于仪器测量波长范围的限制、波长大于 700 nm 的荧光观测不到。图 4 (a)和(b)是 ZnTPP-H₂(*m*-py)TPP 配位二聚体的荧光光谱。

从吸收光谱可知、514 nm 相应于 $H_2(m-py)$ TPP 的吸收峰、ZnTPP 在 514 nm 处没有吸收 峰。因此、 $\lambda_n = 514$ nm 的激发光主要激发二聚体中的 $H_2(m-py)$ TPP。图 4(a)中 650 nm 的荧光 发射主要来自于配位的 $H_2(m-py)$ TPP。图 4(b)激发波长为 547 nm,从可见吸收光谱可知、547 nm 相应于 ZnTPP Q 带的主吸收峰和 $H_2(m-py)$ TPP Q 带的第二个吸收峰、两者的消光系数相 差较大。547 nm 的激发光大部分被 ZnTPP 吸收、使 ZnTPP 处在激发态。如果 ZnTPP 和配位的 $H_2(m-py)$ TPP 之间没有能量传递发生、则发射的荧光主要具有 ZnTPP 的荧光特征、即在 593 nm 和 640 nm 附近出现两个荧光谱带、且前者的强度应大于后者。然而、图 4(b)的荧光谱表明 650 nm 处的荧光强度大大大于 604 nm 处的荧光峰、表明 ZnTPP 激发态的能量通过无辐射跃 迁传递给了配位的 H₂(*m*-py)TPP。图 5 是 ZnTPP-H₂(*m*-py)TPP 体系的荧光随 H₂(*m*-py)TPP 浓度的变化图。随着 H₂(*m*-py)TPP 浓度的增大,593 nm 处的荧光强度逐渐减小,640 nm 处的荧光强度不断增大,同时两者均发生红移,最终荧光带中心位于 604 nm 和 650 nm 附近。当 H₂ (*m*-py)TPP 的浓度小于 4×10⁻⁵ mol·dm⁻²时,分子间的能量传递可以忽略,从图上可以粗略 地估算出表观的能量传递效率^[7]。

$$\mathcal{P}_{\rm ET} = (1 - \frac{I_{\rm d}^{595}}{I_{\rm d}^{595}}) \times 100\%$$

(1)

Φ_{ET}≈57%。表观的能量传递效率不高,这是由于溶液中存在下列平衡:
 ZnTPP+H₂(m-py)TPP ← ZnTPP-H₂(m-py)TPP

溶液中未配位的 ZnTPP 使测得的 595 nm 处的荧光强度偏高,导致 Φεr 偏低。

(a)C_{H₂(m,py)}TTP>4×10⁻ mol ⋅ dm⁻¹
 (b)C_{H₂(m-py)}TTP≤4×10⁻ mol ⋅ dm⁻¹
 图 5 ZnTPP-H₂(m-py)TPP 的荧光光谱随 H₂(m-py)TPP 浓度的变化
 Fig. 5 Fluorescence spectra of coordination dimer ZnTPP-H₂(m-py)TPP recorded in dilute

CHCl₃ solution with various concentrations of H₂(*m*-py)TPP ($\lambda_{sx} = 560$ nm)

当 H₂(*m*-py)TPP 浓度大于 5 > 10⁻³ mol · dm⁻³,轴向加合物的浓度提高,未配位的 ZnTPP 浓度降低,595 nm 处的荧光峰逐渐降 低,最后变成一个平坦的宽峰。按常理 605 nm 处的荧光强度应该不断增加,但图 5(b)表明 650 nm 处的荧光强度反而逐渐减小,这是由 于浓度淬灭不可忽略并占了主导地位。根据化 学平衡原理可得静态淬灭过程中荧光强度与 淬灭剂之间的关系。

$$F_0/F = 1 + Ks[Q]$$
⁽²⁾

式中 Ks 为 ZnTPP 轴向加合反应平衡常数, [Q] 为轴向配体浓度, F_0 和 F 分别为 ZnTPP 和轴向加合物的荧光强度。利用图 5(α) 的数据, 以 $F_0/F - 1$ 对[Q]作图得一直线, 从直

图 6 ZnTPP-py 体系的炎光光谱随 py 浓度的变化

Fig. 6 Fluorescence spectra of ZnTPP-py recorded in dilute CHCl₃ solution with various concentrations of py ($\lambda_{xx} = 558 \text{ nm}$)

93

线斜率求得 $Ks \approx 2 \times 10^4 \text{ mol}^{-1} \cdot \text{dm}^3$,与从吸收光谱求得的 K 值相一致,落在吡啶基轴向配位 的平衡常数值范围之内 $(10^3 \sim 10^4 \text{ mol}^{-1} \cdot \text{dm}^3)^{[a]}$ 。

作为比较,图 6 示出 ZnTPP-py 体系的荧光光谱,从图上可以看到,随着 py 浓度的增加, 595 nm 处的荧光峰发生红移,最后定位于 610 nm,荧光强度逐渐减小,随后又逐渐增加并超过 了纯的 ZnTPP 的荧光强度;随着吡啶浓度的增加、640 nm 处的荧光强度逐渐减小,最后在 665 nm 处形成一个新的肩峰。光谱图上出现三个等发射点,表明基态时形成的加合物在激发态时 仍稳定存在。根据公式(2)可以求得 Ks=2.6×10³ mol⁻¹ · dm³,与根据吸收光谱求得的 K 值相 吻合。由于吡啶在可见光区没有吸收、与 ZnTPP 的荧光发射没有重迭区域,激发态 ZnTPP 的能 量不可能传递给吡啶,这是与 ZnTPP-py 体系的荧光光谱相一致的。

3 结 论

在以配位键相联的 ZnTPP-H₂(*m*-py)TPP 二元体系中存在着能量传递过程,能量从激发态的 ZnTPP*流向自由碱卟啉 H₂(*m*-py)TPP。在 ZnTPP-py 体系中由于吡啶在可见波段没有吸收、与 ZnTPP 的荧光发射之间无重迭区域,激发态 ZnTPP*的能量不能流向吡啶。与 ZnTPP 相比,吡啶加合物的荧光发射波长发生明显的红移。

实验结果表明,通过配位键构造卟啉二元和多元体系来研究分子内的能量传递过程是--条较为方便的路线。

参考文献

- [1] (a) Wasselewski R. Chem. Rev., 1992, 92, 435.
 - (b) Sessier J. L., Johnson M. R., Lin T., Greager S. E. J. Am. Chem. Soc., 1988 110, 3659.
- [2] (a)Breslow I. R. Science, 1982, 218, 532.
- (b)Lehn J. M. Augen. Chem. Int. Ed. Engl., 1988, 27, 89.
- [3] Lindsey J. S. Tetrahedron, 1989, 45, 4845.
- [4] (a)L. Ming, Xu Zheng et al huog. Cham. Acta, 1997, 261, 211.

(b)Brun A. M., Atherton S. J., Harriman A., Heiz V., Sauvage J. P. J. Am. Colum. So., 1992. 114. 4632.
(c)Anderson S., Anderson H. L., Bashall A., MaPartlin M., Sanders J. K. M. Angew. Chem. Int. Ed. Engl., 1995, 34, 1096.

(d) Anderson H. L., Bashali A., Hebrick K., McPartlin M., Sanders J. K. M. Augew. Chem. Int. Ed. Engl., 1994, 33, 420.

- (e) Hunter C. A., Sarson L. D. Angeac. Chem. Ind. Ed. Engl., 1994, 33, 2313.
- [5] (a)Coiwan J. A., Sanders J. K. J. Chem. Soc. Perkon Trans. 1, 1988, 2335.
 - (b) ZOU Jan-Zhong(邹建忠) Master Pegree Thesis of Nanjung University, 1992, 6.
- [6] XI Zheng(徐 正), LIN Jian-Hua(林建华), YU Yun-Peng(俞运鹏) et al. Huarue Xuebao (Acta Chimica Sinica), 1989, 47, 623.
- [7] Brookfield R. L., Eliul H., Harriman A., Porter G. J. Chem. Sor. Faraday Prans. I. 1986, 82, 219.
- [8] Dolphin D, Ed. The Porphyrus, Academic. New York, 1978~1979, 1~7.

第15卷

SPECTRA CHARACTERISTIC OF AXIAL ADDUCT OF ZINC PORPHYRIN WITH $H_{1}(m-py)$ TPP AND ENERGY TRANSFER IN COORDINATION DIMER

XU Xin ZOU Jian-Zhong YE Lei DING Xiao-Feng PAN Y₁ (Department of Chemistry, Non-joig University, Non-page 210093) (** Department of Applied Chemistry, Southeast University, Nan-page 210096)

Porphyrin dyad ZnTPP-H₂(m-py)TPP was constituted through coordination reaction. Visible absorption and fluorescence spectra of coordination dimer were studied. The energy transfer in coordination dimer was proved by fluorescence spectra, which shown that ZnTPP unit transfers excitation energy to the H₂(m-py)TPP. As comparison, visible absorption and fluorescence spectra of ZnTPP-py were studied. The fluorescence spectra of ZnTPP undergoes a red shift by pyridine ligation. There is no energy transfer in ZnTPP-py. The equilibrium contants of coordination reaction were calculated using absorption and fluorescence spectra separately which is consistent.

Keywords: porphyrin dyad energy transfer fluorescence spectrum coordination dimer