Vol. 15, No. 2

March, 1999

 K2NiF4 型希土复合氧化物 Eu2-xSrxNiO4+8

 的合成、结构及还原性能

 0619、338
 養 辉 徐元植 (浙江大学化学系·杭州 310027)

 陈 平 萬玉平 呂光烈 马福泰

利用柠檬酸配合物分解法合成了单相的 K₄NiF₄ 型希土复合氧化物 Eu₂₋、Sr₄NiO₁,,(0.5 ≤ r ≤ 1.2),粉末 X 射线衍射分析表明,在 x 为 0.6 ~ 0.7 的范围内,物相从空间群为 Finance 的正交相转变 成空间群为 I4/mane 的四方相,随著 Sr²⁺的加入,部分 Ni²⁺转变为 Ni³⁺,其转变量与理论值接近。反 映结构稳定性的高温还原峰温与晶胞参数 c 有对应关系,表明化合物的结构稳定性取决于 AO 层与 ABO₃ 层的层间距离。

(杭州大学化学系,杭州 310028)

化学学报

CHINESE JOURNAL OF INORGANIC CHEMISTRY

0611

織土

收稿日期:1997-11-18。 收修改稿日期:1998-07-24。 浙江省自然科学基金资助项目(No 292033)。 * 通讯联系人,现在杭州大学化学系。 、第一作者,楼 辉,男,42岁,教授;研究方向:多相催化、

粉末 X 射线衍射

图 1 理想的 K₂N₁F, 型 A₂BO, 结构 Fig. 1 K₂NiF, type structure of A₂BO,

销锶鲁

第Ź期

1999 年 36月

推普资讯 http://www.cqvip.com

159 •

化物⁽¹⁾,由于容纳因子的限制,Nd 是生成 K₂NiF₄ 型 Nd₂NiO₁ 的最小希土离子,离子半径比 Nd 小的 Sm 和 Eu 不可能生成 K₂NiO₄ 型希土镍酸盐。然而,利用离子半径较大的离子如 Sr²⁺部分 取代希土离子,仍有可能合成出含 Sm 或 Eu 的希土镍酸盐。近来我们已经报道了掺 Sr 的 Sm₂、Sr₄NiO₄₋₅的合成^[4]。在工作中,我们合成出了迄今未见文献报道的 Eu₂、Sr₄NiO₄₊₆(0.5 $\leq r \leq 1.2$)系统的希土复合氧化物,并讨论了 Sr 掺入量 r 对结构及性能的影响。

1 实验

1.1 样品的合成

样品的合成采用溶胶-凝胶法,按照 Eu₂₋,Sr、NiO_{1+*}(*x*=0.3、0、5、0.6、0.7、0.8、0.9、1. 0、1.1、1.2、1.5、1.7)的化学计量比,准确移取各金属离子的硝酸盐溶液,加入等摩尔量的 柠檬酸,将溶液在 332-352K 蒸发使呈凝胶状,然后进一步脱水、灰化,将灰化后的固体在 920K 灼烧4h,自然冷却至室温,再经研磨、压片(3 T · cm⁻²),在 1533K 空气氛中灼烧 10 h。

1.2 物相分析

合成样品的物相分析在 Rigaku D/max-3B X 射线衍射仪上进行,方法与文献[10]报道的相同。

1.3 化学组成测定

样品中金属离子的含量在美国 Leeman Plasma Spec I 型电感耦合等离子体光谱仪上进行。

1.4 Ni³⁺含量测定

样品中Ni的含量采用碘量法测定^[5,11]。将 30 mL、0.5 mol・dm⁻³的 HCl 和 600 mg 的 Kl (两者皆过量)置于三颈瓶中.在N₂ 气流中加入 150 mg 左右精确称重过的样品,在黑暗环境中 放置约 5 min,待固体完全溶解后立即用 0.01 mol・dm⁻³的 Na₂S₂O₃ 标准溶液滴定至终点,根据 Na₂S₂O₃ 标准溶液的浓度及消耗的体积即可算出 Ni 的平均价态,进而可算出 Ni³⁺的含量。

1.5 程序升温还原(TPR)

TPR 在实验室自装的多功能联用装置上进行^[13]。精确称量的 5-10 mg 样品置于石英反 应管中、TPR 气为 10%的 H₂/N₂,流速 20 mL・min⁻¹,升温速率 20 K・min⁻¹,从室温升到 1173 K。

2 结果与讨论

2.1 样品的化学组成

表 1 是 Eu₂-、Sr、NiO₄₊,样品中金属离子的 1CP 测定结果,从数据可见,各金属元素的成分 与配比相当。

2.2 Eug ,St,NiO +。的物相鉴定结果

Eug.,Sr,NiO4+,系列样品的物相鉴定结果见表 2,生成 K3NiF1 型结构样品的粉末衍射数据 见表 3。

第15卷

表 I Eu1-- Sr.NiO1+ 。系列样品的 ICP 测定结果

Table 1 Weight Percentage of Eu, Sr and Ni Ions in Eu_{1-x}Sr_xNiO₄₊₀ Determined by ICP

<u>г</u>	Eu	Sr	Ni
0. 5	57.95(57.79)*)	11.18(11.11)	14.82(14.88)
0.6	54. 96(54. 83)	13. 59(13. 55)	15.20(15.13)
0.8	48, 36(48, 61)	18.88(18.68)	15.69(15.68)
1.0	41.98(41.96)	24. 53(24. 19)	16, 26(16, 20)
1.2	34.79(34.79)	30.07(30.09)	16.84(16.80)

^{a)} Date in brackets are proportion number.

表 2 Eu1-,Sr,NiO,+,系列样品的物相鉴定结果

Table 2 Crystallographic Characterization of Eug-"Sr"NiO(+4

				· •	space
1	phase composition	0/ A	0/ A	(*/ A	group
0.3	Eu_2O_3 , NiO, $Eu_{Z-x}Sr_xNiO_{4+6}(0, 3 \le x \le 0, 5)$			-	
0.5	Eu1. 5Srs. 5NiO++0	5.2980(1)	5, 3668(1)	12.2743(2)	Framan
0.6	Eu1. Sro. NiO4+5	6.3073(1)	5.3340(1)	12, 2864(2)	Fransa
0.7	Eu1. 3Sto 7NiO4+8	3.7611(1)		12. 2825(1)	14/mmm
0, B	Eu1. 2Sto. 2NIO4+4	3.7698(1)		12.2398(2)	(4/mman
0.9	Eu. JSro. eNiO4+a	3.7715(1)	•	12.2265(1)	14/mma
1.0	Eu. Sr. oNiOs+8	3.7796(1)		12.1986(1)	14/mmm
1.2	Euo, 1 Sr1- 2N(O4+ 6	3.7859(1)		12.1814(1)	14/numon
1.5	$Lu_{2-x}Sr_{x}NiO_{4+5}(1, 2 \le x \le 1, 5), SrCO_{3}$				
1.7	$Eu_{2-s}Sr_{s}NiO_{4+b}(1, 2 \le s \le 1, 7), SrCO_{3}, NiO$				

在 K₂NiF₄ 型 Ln₂NiO₄ 结构中, Ln 原子为 9 配位, Ni 原子为 6 配位, 根据与此相应的 Shannon 有效离子半径^[13]计算的 Nd³⁺、Eu³⁺、Sr²⁺与不同价态 Ni 离子的容纳因子值如表 4 所列。

diffracation	<i>z</i> == 0	, 6	r == ()	. 6	diffraction	x=0	. 7	<i>z</i> = 0	. B 📃	z =0	. 9	x — 1	. 0	<i>x</i> == 1	. 2
data	·	Frank			data		<u> </u>			14/manm					
	4/ Å	1/10	4/ Å-	1/19	242	4/ X	1/10	4/ X	1/10	d/ X	l/l_0	41 X	1/10	11 X	1110
111	3.604	25	3. 598	25	011	3. 696	24	3. 603	21	3.604	20	3.610	21	3.615	19
004	3.069	13	3.072	16	004	3,071	16	3.060	20	3.057	14	3.050	1 B	3.045	13
113	2.773	100	2.771	100	013	2.770	100	2.769	100	2.768	100	2.768	100	2.769	100
020	2. 683	36	2.667	35	110	2.660	72	2. 666	66	2.667	70	2.673	69	2.677	- 72
200	2. 649	34	2. 654	35	112	2. 441	2	2.444	1	2.444	2	2.448	3	2. 451	2
115	2. 057	18	2. 057	18	015	2.057	19	2.064	19	2. 052	20	2.050	20	2.049	20
006	2.046	11	2.048	12	006	2.047	12	2.040	12	2.038	12	2.033	13	2. 030	14
024	2. 020	15	2.014	16	114 .	2.010	33	2.010	32	2.010	33	2.010	33	2.011	34
204	2.005	15	2.008	16	020	1. 881	38	1.885	37	1.886	38	1.890	37	1.893	4
220	1.885	34	1. 8B1	36	022	1.798	1	1.801	1	1.802	1	1.806	2	1. 808	1
131	1.679	4	1.670	3	121	1.667	6	1. 670	6	1.671	6	1.674	5	1.677	5
311	1.662	3	1.664	3	116	1.622	12	1.620	13	1.619	12	1.618	13	1.618	13

表計	Eu _{1-s} Sr ₂ N	1104+4系列样品的	メ 末 保	-射线衍射数据
Table :	Powder	X-ray Diffraction	Data of	

-

-

第2期 楼 辉等 : K:NiF, 型希土复合氧化物 Eu:-、Sr,NrO1+-的台成、结构及还原性能

.

-

-

۲

diffracation	т == 0, 5 т == 0. Ртнин		6 diffraction	x=0.7 x		x = 0	z=0.8 z=0.9		9	r =]. 0		r=1.2			
d⊿ta			P114	data					14/m	N118					
	4/Å	\overline{D}	d∕ å	1/1		47.8	1110	4/ A	$1/I_{0}$	d/ Å	I/I_0	d/ A	1/50	11	\$/\$0
026	1.327	6	1 624	23		1.604	8	1.605	8	1.605	8	1.606	8	1.608	B
206	1.619	6	1.621	6	017	1.591	11	1.586	10	1. 585	10	1.583	ម្	1. 581	4
224	1 605	8	1 601	8	123	1.556	36	1 558	33	1.559	35	1.561	35	1. 563	37
117	1 590	11	1.591	11	008	1.535	1	1.530	5	1.528	5	1.528	5	1 523	5
133	1.566	17	1.559	17	125	1. 388	8	1.389	8	1.388	Я	1. 389	в	1 390	4
310	1 552	17	1.554	18	026	1.385	11	1- 384	11	1.384	10	1.384	11	1. 385	12
800	1.531	4	1. 53հ	4	220	1.330	10	1.333	9	1.333	12	1.336	9	1.339	11
135	1. 395	4	1.390	4	118	1.330	7	1.327	7	1.326	7	1.324	7	1.324	8
226	1. 386	9	1, 385	10	031	1.247	1	1.250	J	1.251	J	J. 253	J	1.255	J
315	1 385	1	1.387	4	224	1.220	3	1.222	3	1 222	3	1.224	3	1. 225	3
040	1.342	4	1.334	5	127	1.214	9	1-214	6	1.213	8	1.213	8	1.214	Ĥ
028	1.332	4	1.331	3	033	1. 199	7	1. 201	4	1.201	7	1.203	7	1. 205	7
208	1 328	3	1.329	3	130	1. 189	10	1.192	9	ī 193	9	1. 195	10	I 197	10
400	1.325	4	1.327	5	028	1.189	7	1. 188	7	1.188	7	1. 187	7	1.187	Ŗ
137	1.219	4	1-216	4	035	1. 117	2	1. 118	2	1.118	2	1.119	2	1.121	2
317	1. 212	4	1.213	4	226	1.115	5	1. 116	5	1.116	5	1.117	5	1.118	6
333	1.201	7	1.199	7	1110	1.115	3	1.112	3	1.111	3	1.113	3	1.114	9
240	1.197	4	1.192	4	134	1.109	8	1.110	8	1. 111	8	1.110	8	1.109	1
228	1.190	6	I.190	7	0111	1.070	9	1.067	8	1. 0 66	8	1.064	8	1.063	12
420	1.188	4	1.188	5	231	i. 039	3	1 043	2	1.042	3	1.014	2	1.046	3
244	1.115	3	t- 1	1	136	1.028	ō	1 029	5	1.029	5	1. 030	5	1.031	ŀ
406	1-112	2	1-114	2	0210	1.028	1	1.027	1	1.026	Т	1.025	I	1.024	3
424	1.108	4	1.108	4	037	1.020	3	1.020	3	1.020	3	1.021	2	1.022	3
1111	1.070	8	1.071	9	233	1.011	9	1.013	8	1.013	9	I.015	9	1.017	13
246	1.033	2	1.030	2	228	1.005	5	1.005	5	1 005	5	1.005	5	1.005	6
126	1.027	2	1.028	2	235	0.9602	3	0 . 9615	3	0.9617	3	0. 9631	3	0.9613	3
337	1.021	3	1.021	3	010	0.9403	4	0.8424	3	0.9429	1	0. 9149	3	0, 9465	1
153	1.019	4	3.013	4	138	0.9402	6	0.9404	6	0. 9300	6	0.9407	6	0.9411	7
048	1 010	2	1.009	5	1211	0. 9327	13	0.9287	12	0.9281	13	0.9272	13	0. 9268	15
513	1 008	4	1.007	2	141	0. 9097	L	0.9118	1	0.9122	1.	0.9141	1	0.9156	1
408	Į. 003	2	1.004	2	2210	0.9023	1	0. 9015	1	0.9012	I.	0. 9009	l.	0.9038	2
248	0.9436	3	0.9415	3	044	0. B 991	2	D. 90 0 7	2	0.9010	2	0. 9036	2	0. 9009	t
440	0.9425	2	4. 9407	4	237	D. 8967	5	D. 8974	5	0.8974	5	0.8983	5	0. 8990	5
428	0.9392	3	0.9397	3	143	0. B 904	9	0.8922	8	0.8925	8	0 8942	8	0. 8956	10
1311	0.9320	14	v. 9312	7	330	0. 8865	3	D. 8885	3	0. B 8B9	3	0. 8909	3	0.8923	3
3111	0.9291	ō	0.9300	7	0014	0.8773	3	0.8743	2	0. B733	I.	0.8713	2	0.8701	3
157	0.9020	3	0.8985	3	145	0.8552	3	0.8718	2	0. B567	3	0.8581	3	D. 8592	3
353	0. 8949	4	0.8917	4	046	0.8545	3	0. 8556	3	0.B557	3	0.8569	3	0. 8578	1
517	0.8942	2	0.8951	3	1310	0. 8544	5	0.8540	5	0.8537	5	0.8551	3	0.8563	4
533	0 8896	1	0. 8897	4	334	0.B517	3	0. 8533	3	D. 8536	4	0.8537	5	0. 8539	ч
2410	0.8569	Ĵ	0. 8854	2	240	0. 8410	B	0.8429	4						
446	0.8562	J	0 8548	3	0311	0. 8338	8								
250			0.8430	1	1]]4	0.8332	Б								
3311			0. 83 11	8											

•

表 4 Nd¹⁺、Eu¹⁺、Sr¹⁺与不同价态 Ni 离子的容纳因子值

Table 4 Values of the Tolerance Factor $(t=r_A/r_B)$ of Nd³⁺, Eu³⁺ and Sr³⁺ with Different

Valence Value of Ni Ions Based on Shannon's Ionic Radii

	Nd ³⁺	Éu ¹⁺	St ²¹
Ni ²⁺	1.69	1.62	1.90
Ni ³⁺ (low-spin)	2.08	2.00	2.30
Ni ³⁺ (high-spin)	1. 94	1.87	2. 20

从表 4 数据可见, Nd³⁺ 与 Ni²⁺的 t 值在允许的低值, 它是能合成 Ln₂NiO₄ 的最小希土离子, 离子半径比 Nd³⁺小的 Sm³⁺、Eu³⁺不能生成 K₂NiF₄ 型化合物, 我们的实验结果确实如此。但是 利用离子半径较大的离子部分取代希土离子, 使 A 位离子的有效半径 r₄ 得以增大,或者通过 在 A 位或 B 位部分取代, 使 B 位离子氧化而成为较高价态、有效半径减小等都有可能使 t 值落 在容许范围之内。事实上我们过去已合成出了用 Sr²⁺部分取代的 Sm₂₋, Sr, NiO₄₊,^[4]。

从表 2 所列的结果可见,对于 Eu_{2-x}Sr_xNiO_{4+s}体系,当 x 值在 0.5-1.2 范围时,得到了单相的 K₂NiF, 型希土复合氧化物,当 Sr²⁺取代量少时(x=0.3),只能使样品中部分 Eu 和 Ni 符合 生成 K₂NiF, 型复合氧化物的条件(1.7 $\leq t \leq 2.4$),余下的 Eu、Ni 仍以 Eu₂O₃、NiO 的形式存在。但 Sr²⁺的掺入量有一定限制,过多 Sr²⁺的掺入使化合物电荷平衡的条件不能满足,故而当 x> 1.5 时多余的 Sr 不能进入 A 位,而以游离的 SrO 存在,SrO 极易吸收空气中的 CO₂ 而成为 Sr-CO₄,由此造成了配比中 Ni 的过量,所以 XRD 图谱上出现了 SrCO₃ 与 NiO 的衍射峰。

从表 2 的结果还可见,在 r 为 0.5~0.6 的范围内属正交晶系,空间群为 Fmmm, 在 0.7≪r ≪1.2 范围、转变成空间群为 /4/mmm 的四方晶系,在晶系转变处,晶胞参数 c 具有极大值。

2.3 Ni 离子的价态

Ni 的平均氧化数随 z 的变化如图 2 所示, Ni³⁺的百分含量及由 Ni 的平均氧化数计算得 到的非化学计量氧(*d*)如表 5 所列。

从表 5 的数据可见, d 值的范围从 0.02 到 -0.102、显然它们是非计量化合物、z 值大于 0.9 后,结构中的氧缺位数急剧增加。从图 2 可 见、Ni 的平均氧化数随 z 的增加而呈线性增 加,并且偏离理论值不大。因此在 A₂BO₄ 型复 合氧化物的合成中,通过用 A'离子部分取代 A、可有目的地将 B 离子的价态控制在一定的 范围、甚至可以得到不寻常的价态。在本工作 中, 对 z = 1.1 和 1.2 的样品, Ni 的平均氧化数 分别达 3.06 和 3.16。 A₂BO₄ 型复合氧化物的

图 2 Eu:-..Sr,NiO(++系列样晶中测量的与计算的 Ni的平均氧化数及 6 与 1 的关系

Fig. 2 Measured (1), calculated (4) means oxidation number of Ni and $\delta(7)$ as functions of a in Eu_{2-x}Sr_xNiO₃₊₅

这种性质在研究其电、磁和催化作用机理时将会十分有用。

163 •

Table 5 Contents of Ni ³⁺ and δ in Eu _{1-x} Sr _x NiO ₁₊₄ and TPR Measurements								
	Context of		Trend	$A_1/(A_1+J_h)$	2'max.n	$A_{\rm h}/(A_{\rm f}+A_{\rm h})$		
7	$NO^{11} / \Psi(0)$	9	/K	157	/ K	194		
D. 5	53	0. 02	818	39	988	61		
0.6	63	0.01	828	11.3	9 <u>1</u> 3	58.7		
0.7	72.5	0.01	×28	19.7	973	50.3		
8 0	83	u. 005	828	48.4	1023	51. h		
0.9	89	-0.005	808	18. 1	1038	51.6		
1 0	95	-0.03	808	18.4	1063	51.6		
I I	100	ū. Q5	798	50.9	1058	49 1		
1.2	100	-0.102	798	55.3	1068	44.7		

表 5 Eu、_、Sr,NiO,…系列样品的中 Ni^{s+}的百分含量、非化学计量氧及 TPR 测定结果

" Percentage Ni³⁺ and nonstorchiometric oxygen of are got by means of the calculation of average valence state of Ni ion

2.4 Eug.,Sr,NiO4+。的还原性

从图 3 所示的样品的 TPR 图谱可见,所有 样品都有两个还原峰,这与我们以前研究过的 钙钛矿 ABO, 型及其它的 K₂NiF, 型 A₂BO, 希 土复台氧化物类似。其低温与高温还原峰温 (Tmax, 及 Tmax,)等数据列于表 5。将从还原峰面 积之比得到的低、高温峰相对还原百分率与 Ni⁺⁺、Ni⁺⁺的相对含量相比较很难看出它们之 间的联系,因此这两个还原峰不应该是不同价 态的 Ni 的还原。我们以前的工作表明^{11,41},低 温还原峰对应于过渡金属 B 离子的部分还原. 这时化合物仍保持着原来的结构。经高温还原 后, B离子被完全还原。原来的钙钛矿或 K₂NiF₁型结构彻底解体。因此可以说低温还原 峰温的高低,反映了样品与氧的结合能力,高 温还原峰温的高低反映了样品的结构稳定性。 从表5可见高温还原峰随工的变化规律与晶 胞参数。与 r 的变化正好相反,表明 Eus-、 Sr,NiO₄₋₄的结构稳定性跟结构中 ABO₁ 层与

结 3 论

AO 层的距离有关。

 台成了单相的 K_sNiF_ℓ 型希土复合氧化物 Eu₂-,Sr,NiO₍₊₊₊ 值范围在 0.5 到 1.2 之间。
 在 r 为 0.6~0.7 的范围内,物相从空间群为 Pranam 的正交相转变成空间群为 14/aanam 的四方 相。

2. 非化学计量氧 ٥ 的值随 r 的增加而减少,当 r 值大于 0.9 以后, ٥ 值急剧减少,即结构中

第15卷

的氧缺位数急剧增加。

3. 样品 TPR 的高温还原峰随 z 的变化规律与晶胞参数 c 随 z 的变化正好相反、意味着结构稳定性跟结构中 ABO₃ 层与 AO 层的距离有关。

参考文献

[1] Ganguly P., Rao C. N. R. Mater. Res. Bull., 1973,8,405.

[2] Arbuckle B. W., Ramanujachary K. V., Zhang Z., Greenblan M. J. Solul State Chem. 1990, 88, 278.

[3] Arbuckle B. W., Ramanujachary K. V., Buckley A. M., Greenblatt M. J. Solid State Chem. 1992,97.271.

- [4] LOU Hui, 'GE Yu-PING, CHEN Ping, MA Fu-Tai, LU Guang-Lie J. Mater. Chem., 1997,7,2097.
- [5] Sayer M., Odjer P. J. Solid State Chem., 1987, 97, 26.
- [6] Rao C. N. R., Ganguly P., Singh K. K., Ram R. A. M. J. Solid State Chem., 1988.72,14.
- [7] Ladavos A. K., Pomonis P. J. Chem. Soc., Faraday Trans., 1981.87(19),3291.

[8] Nitadori T., Muramatsu M., Misono M. Bull, Chem. Soc. Jpn., 1988, 91, 3831.

- [9] Ganguli D. J. Solid State Chem. , 1978, 30, 353.
- [10]CEHN Ping(陈 平), LOU Hui(楼 辉)、CAO Lai-Zhang(操来章), MA Fu-Tai(马福泰) Wayn Himmer Xuebno (Chanese J. Jeony, Chem.), 1995, 11(4), 404.

[11]Gushee B. E., Katz L., Ward R. J. Am. Chem. Soc., 1857, 79, 5061.

- [12]LOU Hui(楼 辉), MA Fu-Tai(马福泰), CHEN Yong-Hua(陈永华), Sepu (Chinese J. Chromatugr.), 1989.6 (3),168.
- [13] Shannon R. D. Acta Crystallogr. , Sect. A, 1976, 32, 751.

[14]LOU Hui, MA Fu-Tai. CHEN Yong-Hua, React. Knuel. Lett., 1990, 42(1), 151.

PREPARATION, CRYSTAL STRUCTURE AND REDUCIBILITY OF K₂NiF₄ TYPE OXIDES Eu_{2-x}Sr_xNiO₄₊₆

LOU Hui* XU Yuan-Zhe

(Department of Chemistry, Zheriang University, Hangahan 310027) CHEN Ping GE Yu-Ping LU Guang-Lie MA Fu-Tai (Department of Chemistry, Hangahan University, Hangahan 310028)

 K_2NiF_4 type compounds $Eu_{2-x}Sr_xNiO_{4+a}(0, 5 \le x \le 1, 2)$ have been prepared by a citric acid complex decomposition method. The powder X-ray diffraction data showed that there is a crystal system transformation from orthorhombic *Fmmm* to tetragonal 14/mmm at around x = 0, 6 to 0, 7. The valences state of nickel in the samples are increased with the Sr substitution, which does not deviate much from theoretical data. The variation of $T_{mex,h}$, in TPR profiles, is opposite to the cell parameter c with increasing x, which means that the structural stability of $Eu_{2-x}Sr_xNiO_{4+a}$ is related to the distance between the layers of perovskite and rocksalt.

Keywords:

K₂NiF₁ type structure

rate earth complex oxides

X-ray powder diffraction