		^{维普资讯 http://www.cqvip.com}
第 2 期	毛 机 化 学 学 报	Vol. 15, No. 2
1999 외 3 원	CHINESE JOURNAL OF INORGANIC CHEMISTRY	March , 1999

ゆきじきりさいにうちょう 研究简报。 -----

(四氮杂十四元大环)・双(0,0'-二(1-萘基))6[98] 二硫代磷酸根)合镍或铜的合成与谱学性质

D614.121

吴士业 谢 斌!

(四川轻化工学院轻工系,基础部1,自贡 613033)

O、O'-二烃基二硫代磷酸的铵盐和配合物可作为润滑油和燃油的添加剂、高分子材料的稳定剂以及人造橡胶的硫化促进剂。[(RO),PSS]。M 作为润滑油抗氧化剂时、常需要加入一些简单胺、这样可有效地缩减氧化作用^[1,2]。为此人们合成了一些含简单氮配体的过渡金属的O、O'-二烃基二硫代磷酸的配合物^[1,-2]、配合物中的O、O'-二烃基二硫代磷酸根(RO),PSS⁻⁻可以是非配位的、也可以是单齿配体或双齿配体。我们在原有工作的基础上^{4,0]}、合成了4个含四氮杂十四元大环配体 hmtade 或 bmta 以及O、O'-二(1-萘基)二硫代磷酸根的镍和铜的配合物[ML:SSP(OC₁₀H;-1),2,2](1:M=Ni、L=bmtade; 2,M=Cu、L=hmtade; 3,M=Ni,L=bmta; 4,M=Cu、L=hmta)。其中配体 hmtade 代表 5,7,7,12,14,14-六甲基-1,4,8,11-四氮杂环十四-1,11-二烯;而 hmta 为内消旋的 5,7,7,12,14,14-六甲基-1,4,8,11-四氮杂环十四烷。

1 实验部分

1.1 仪器及测试条件

WC-1 型显微熔点仪(四川大学科教仪器厂),温度计未校正;Carlo-Erba (106 型元素分析 仪;DDS-11A 型电导率仪(上海雷磁新泾分厂),用无水 DMSO 作溶剂;Nicolet MX-1 型红外光 谱仪,石蜡糊;日本 Shimadzu UV-240 型紫外-可见光谱仪,CHCl,作溶剂;日本 Rigaku 热分析 仪,a-Al₂O,作参比、静态空气气氛,升温速度 10 C/min,走纸速度 10 mm/min, In 校正温度。 1.2 试剂

P₂S₅ 经甲苯洗涤和 CaCl₂ 真空干燥, DMSO 经 4A 分子筛干燥和重蒸,其余试剂均为分析 纯、按文献^[n]方法合成了 hmtade 的大环配合物[M(hmtade)](ClO₁)₂(M=Ni,Cu); 用 NaBH₁还 原 hmtade · 2HClO₄, 经拆分可获得内消旋四氮杂大环 hmta · 2H₂O^[10]。参照文献^[*]的方法, 合成 了 浅橙色粉末(1-C₁₀H₂O₂)PSSNH₂(C₁H₃)₂、产率 38^{3/4}, 熔点为 157~159 C。

四川省教委重点科研课题资助项目(No. 199337)。

▶ 週讯联系人。

收稿日期:1998-01-26。 收修改稿日期:1998-05-05。

第一作者,吴上业,男,52岁,副教授;研究方向;高分子材料抗氧剂。

x

Ъ

1.3 配合物的方法

参照文献;4;的方法,合成了配合物1和2。而配合物3和4是按下述方法合成的;

将 0.32 gt1 mmol) hmta • 2H₂O 和 0.25 g(1 mmol) Ni(OAc) • 4H₂O 溶于 60 mL 甲醇中, 在 60 (水沼土加热 20 mm。将含有 0.95 g(2.1 mmol)(1-C₁₆H₂O)₂PSSNH₂(C₂H₃)₂ 的 10 mL 热 甲醇滴入到上述搅拌的溶液中,立即出现沉淀,在 60 C 水浴上继续加热搅 30 min.减压过滤, 甲醇洗涤,P₂O₅ 真空干燥,得 i.0 g 橙色配合物 3。

2 结果与讨论

2.1 配合物的组成和性质

配合物的 DMSO 溶液(10^{-*} mol·L⁻¹)测得的摩尔电导值在 32.2~14.2 S·em·mol⁻范 围内(室温),均为非电解质^[11],即两个(1-C₁₆H₂O),PSS⁻均处于配上与的出界,流可副体 (1-C₁₆H₂O),PSS⁻作为单齿配体与中心金属形成了配位键,金属离子的配位数为六,整(2⁻⁻ 物的构型为八面体^[150]。配合物均不溶于水、四氯化碳、乙醚、苯和丙酮、微溶于甲醇、乙醇、乙 腈、氯仿和二氯甲烷,而易溶于 DMSO 和 DMF,

complex c		т.р. /С	yield	elein ana). (calcd. ".)			mul. cond.	
	colour		7.9%	с	н	N	15 • cm ² • mol ⁻¹)	
		229. 5~231. 5	69.06	ភ័ព អូទ	5. 17	5 45	11 3	
L	i orange			(61 43)	15. 191	15.091		
	hakt street		70 47	60.80	5.18	8 6	ha .	
2 Agni purple	(a), 5~ (a), 5	72.07	160.77 ((5. 16)	C1 701	-56.6		
3 urange		260, 0~267, 0	90, 41	60.97	5.99	5.02	32. 2	
	urange			(60.8))	(5.83)	(5-07)		
4 purplish re		04C C 047 4	21. 01	60. KI	5.75	1.96	# 0.0	
	purplish red	245, 5~246, 0	79, 21	(36) 551	15.81)	(5, 01)	42. 2	

表1 配合物的颜色、熔点、产率、元素分析和摩尔电导

2.2 红**外光谱**

表 2 配合物的特征红外吸收带

	Table 2	Characterístic	Infrared Absorp	tion flands of Co	omplexes	em-
cumplex	/N-н	27 - N	Tips ac	PP D TC:	$n_{S_2}(as)$	2ps ₁ (s)
1	3210(vw)	(658(s)	1171(5)	1042(15)	5871153	57(45)
			1150(s)	1013(5)	638(55)	560 (m)
			(122(w)			
2	3212(vw)	1666(5)	1170(s)	1043(vs)	6871951	570(5)
			1152(s)	(0)5(5)	$\{i_i\}_{i=1}^{n-1} \{i_i \in \mathcal{N}_i\}$	560(141)
			11 (3) 5)			
3	3220(vw)		((69)w)	1040(5)	69912)	570(m)
			[153(m)	1013(m)	679195)	
4	3205(vw)		(174(w)	104115)	690157	56915)
			1164(5)	10/2/51	61113.1	5571w i
			1155(5)			

配合物的 PS。的不对称和对称伸缩振动吸收带各有两条,其位置分别位于 699~638 和 570~557 cm 4,而(P)-O-C 和 P-O-(C)的伸缩振动吸收带分别在 1174~1113 和 1042~986

cm "范围内,它们各有2~3条吸收带。尽管配合物的金属中心和大环配体不同,但归属于(1Cm(H;O),PSS 配体的4组红外特征吸收带的位置几乎不变。Harrison等人也证实了配体(RO),PSS 的配位模式和配合物所处的环境对(RO),PSS 配体的红外特征吸收带的位置几乎 无影响^{7,121}。归属于四氮杂大环的 N-H 伸缩振动吸收带的强度极弱,其位置在 3242~3205 cm 、配合物1和2还分别在 1658 和 1666 cm⁻¹处出现了归属于不饱和四氮杂大环配体 hmtade 的 C=N 的强伸缩振动吸收带;配合物 3 和 4 的内消旋大环配体 hmta 在 1310~1240 cm ' 范围内仅在 1262 cm⁻¹出现了一条强谱带,这与内消旋大环 hmta 的单体在此范围内出现 1 条 谱带明显不同.¹⁴¹。

2.3 电子光谱

所有配合物的电子光谱几乎相同、说明它 们的结构相似。图1是配合物1和3的电子光 谱。配合物在 242 nm 强吸收带为四氮杂大环 配体 hmtade 和 hmta 的电荷转移跃迁。配合物 1 在 288 nm 处的强吸收带为金属到四氮杂大 环配体 hmtade 的电荷转移跃迁(1e_k→π^{*})¹¹ (而 Curtis 等人将此吸收带归属为大环配体的 C=N 键的 π→π^{-11.17}):而其余3个配合物在 288 nm 附近的强吸收带为配体 hmtade 或 hmta 到金属的电荷转移跃迁(1c,→2b),)^{11.17}。镍配 合物 1 和 3 在 460 nm 附近并未出现归属于四 「方平面构型[NiN4]的'Au→'4。特征吸收带'''、 而在 360 和 498 nm 附近出现了归属于六配位 四角镍的 ь, 跃迁带('B₁₄→'E₆, 'A₂₄(P))⁻¹⁴ !", **这**说明两个配体(I-C_{IP}H₂O)₂PSS 于四氮杂大 环的轴向位置与金属中心配位"1。配合物1和

||新日 配合物 1 日 3 旧地子无语 Fig. 1 Electronic spectra of complex 1 and 3

3 在 320 nm 的肩峰为配体(1-C₁₀H₂O)₂PSS⁻ 到金属的电荷转移跃迁;而配合物 2 和 4 却弱红移 到 310 nm,说明配位键 Cu-S 键略强于 Ni-S 键^[11,30]。因此 4 个配合物的结构与[Cu(hmtade)· 'SSP(OCH_2CH_2Pb)_2)_2]结构相似²⁰¹。两个配体(1-C₁₂H-O)₃PSS⁻ 于大环配体的两侧轴向位置对 金属中心配位、同时四氮杂大环配体 hmtade 和 hmta 为内消旋体。

另外配台物还在 230 和 275 nm 的肩峰为紫环的 EI 和 E2 吸收带、

2.1 差热分析

所有配合物的第一热效应峰的外推始点温度 2. 与各自的熔点相吻合(在熔融时、除配合物4为强放热峰外,其余3个配合物均为尖锐的吸热峰),配合物的熔融温度下的 TG 曲线已有明显失重、说明所有配合物的熔融时已开始分解。配合物均首先失去两个(1-C₁-H-O)_PSS 配体后四氮杂大环才缓慢分解、说是 M-N 键比 M-S 键稳定^[1-4]。

两个镍配合物的 TG-DTA 曲线非常相似,图 2 是配合物 1 的 TG-DTA 曲线。配合物 1 在 232.5 C出现一吸热峰外,在 313.0 和 511.5 C处有两个放热峰,TG 线上第一平台和第二平台 的质量 差 与 理论上失去两个 (1-C₁₀ H₂O)₂PSS 配体相吻台,配合物中的两个配体 (1 C₁₀H₂O)₂PSS 是交错在一起失去的。随着温度的升高,四氮杂大环缓慢分解氧化,这时配合

约1无明显热效应。

配合物 2 的 TG-DTA 曲线与我们曾经报道的配合物[Cu(hmtade) {SSP(OR),}]的 TG-DTA 曲线非常相似^[4],铜配合物中的未配位的 P=S 键对热极不稳定,加热时首先失去两个未 配位的硫原子。从图 3 可知,而配合物 4 在熔融时的热效应却为强放热峰(T_P=252.6(),同时 在 255.6C有一尖锐的吸热峰,而且未配位的两个硫原子是分步脱去的,这可能与四氢杂大开 hmta 配体的柔韧性大有关。

表 3 配合物的主要热分析数据 Table 3 Main Thermal Analytical Data of Complexes

T: -			weight (5%					
	25		C(RO) PSS-					
	7(-	temp. / ('	anal. (calcd. 17%	temp. 7 C	anal. (calut. 11).			
	230.0			221 2~513 5	68 8(69.2)			
2	191.5	187.3~210.7	5.0(5.8)	187.3~578.8	68.7(68.10)			
3	268.0			246.U~363.9	69 J(69.P)			
4	244.6	$244.6 \sim 271.3$	6.1(5.9)	241. 6~529. 6	69.3(68.7)			

+ Extrapolatic origination temperature of first thermal effect perk

参考文献

- [1] Drew M. G. B., Forsyth G. A., Hasan M. et al. J. Chem. No. . Dation Trans, 1987, 15). 1827.
- [2] Drew M. G. B., Hasan M., Hobson R. J. et al. J. Chem. Soc., Patton Trans., 1986, (6), 1161.
- [3] Visalakshi R., Jain V.K. Trausstan Met. Chem., 1990, 15, 278.
- [4] YU Yuan-Peng(前远鹏), ZHU Duo-Lin(朱多林), LlU Shi-Xiong(刘世雄) et al Jienou Huane (Chanese J. Shiwa. (Denn.), 1990, 9(1), 73.
- [5] LIN Jian-Hua(林建华), XU Zheng(徐 正), YOU Xiao-Zeng(荷敦曾) et a) Junyon Huazure (Cluviese J. Struc. (Them.), 1990.9(3),207.
- [6] Harrison P. G., Brown P., McManus J. et al. Inorg. Chim. Acta, 1991, 190(2), 209.

- - - - --

[7] Harrison P. G., Begley M. J., Kikabhai T. et al. J. Chem. Soc. Bullow Trans., 1986, (5), 929.

[2] XIE Bin(谢), WU Shi-Ye(吴士业), Guidenny Xuerna, Huurue Xuelra, (Chern. J. Chnurst (Internation), 1998.19 (1), 74.

[9] XIE Bin(谢), WU Shi-Ye(吴士业), Sudnan Quag Huagong Xaeyaan Xuebas (J. Suchura Institute Ladit Ind. & Chem. Tech. 1, 1997,10(2),7.

[10]Douglas B. E. (Ed.) Interpret synthesis Vol. 18, John Wiley and Sons Wiley, New York, 1978.

- [11]Geary W. J. Count. Chem. Rev. , 1971. 7(1), 8[.
- [12] Harrison P. G., Begley M. J., Kikabhai T. et al. J. Chem. Not. Datto, Trans., 1989, (12), 2413.
- [13] Curns N. F. , J. Chem. Soc. (A), 1964, 2644.
- [14]Kobayashi H., Kotybut-Daszkiewicz B. Bull. Chem. Soc. Jpn. 1972, 42(8), 2485.
- [15]Kolinski R. A., Korybut-Daszkiewicz B. Iwrg. Chm. Actr., 1975, 14(2), 237.
- [16]Curtis N. F. , Curtis Y. M. , Powll H. K. J. Chem. Soc. (A), 1966,1015.
- [17]Sadasıvan N. , Kernohan J. A. , Endicott J. F. Iwarg. Chem. , 1967, 6(4), 770.
- [18] Warner L. G., Busch D. H. J. Am. (hem. Soc. 1969, 91(15), 4092.

[19] Martin L. Y., Sperati C. R., Busch D. H. J. Ann. (Inem. Soc., 1977, 99(15), 2968,

[20] XIE Bin (谢 献), WU Shi-Ye(吴士业), Wan Hannae Xuelan ((honese d. hunn (hen), 1997, 13(4), 420.

SYNTHESIS AND SPECTROSCOPIC PROPERTIES OF (TETRAAZACYCLOTETRADECA) • BIS(0.0'-BI(]-NAPHTHYL)DITHIOPHOSPHATE)NICKEL OR COPPER COMPLEXES

WU Shi-Ye XIE Bin1*

(Department of Light hidustry, Nuclean Institute of Light Industry & Chemical Technology, Zigong 643033) ("Department of Basin Nirences, Suchain Institute of Light Industry & Chemical Technology, Zigong 643033)

Four new nickel and copper complexes $[ML{SSP(OC_{10}H_{7}-1)_2}_{2}]$, where M = Ni(|I|), Cu(|I|); L = 5.7.7.12.14.14-hexamethyl-1.4.8.11-tetraazacyclotetradeca-4.11-diene(hmtade) or 5.7.7. 12.14.14-hexamethyl-1.4.8.11-tetraazacyclotetradecane(hmta); $SSP(OC_{10}H_{7}-1)_{2} = 0.0'$ -bis(1naphthy)dithiophosphate, were synthesized and characterized by elemental analysis, molar conductiviiy, infrared spectra, electronic spectra and TG-DTA thermal analysis. The complexes are non-electrolytes in DMSO. 0.0'-bis(1-naphthyl) dithiophosphate ligand that behaves in monodentate tashion coordinates to metal ion.

Keywords: tetraazamacrocycle O_1O' -dialkyldithiophosphoric acid coordination TG-DTA analysis