Vol. 15, No. 3 May, 1999

0614.334

ŧ.

镧系四元混合阴离子配合物[Pr(CH₃CH₂COO)₂(NO₃)(phen)₂]

合成和晶体结构

朱龙观"俞庆森~谢学鹏

在含水溶剂、酸性环境中合成了镧系四元混合阴离子配合物[Pr(CH₃CH₂COO)₂(NO₁)(phen)]₂ 并解析了其晶体结构,三斜,空间群 P I, a = 0.9650(2) nm、b = 1.2949(4) nm, c = 0.8994(2) nm. $a = 95.37(3)^{\circ}, \beta = 111.05(2)^{\circ}, y = 102.87(2)^{\circ}, F = 1.0037(5)$ nm³, Dc = 1.758 g·cm⁻¹, Z = 1. $F(000) = 528, \mu(Moka) = 24.64$ cm⁻¹, B = 0.024, $R_w = 0.034$, 四个丙酸根呈二种配位方式, Pr^{3+} 为 九配位。

关键词:	混合阴离子	错;	晶体结构	配合物	翻到
- 4 本 長 .	O614.33				** * {*)
<i>7</i> , 2 , 9,		1		四え	- /

镧系四元混合阴离子配合物的研究已引起一些研究者的关注,但晶体结构的解析还很少, Rogers^[1]、朱文祥^[2]等解析过几个晶体结构。含杂环胺四元混合阴离子配合物我们已作过一些 研究^[3-5]。Forsberg^[6]曾认为含杂环胺的希土配合物在含水溶剂中很难合成,因 Ln³⁺与 H₂O 的 作用很强。我们继续进行探索,从含水溶剂中合成了[Pr(CH₃CH₂COO)₂(NO₃)(phen)]₂ 配合物 并解析了晶体结构。这类配合物的特点是,按有效离子半径加和与 Ln-O、Ln-N 键长比较,判断 配合物属不稳定。但实际这类杨合物十分稳定,在X 射线照射下也几乎不衰减,因而很有必要 对此进行探索。

1 实验部分

1.1 配合物合成

称取氧化镨(Pr₈O₁₁)0.1 mmol,加入稍过量的 6 mol·L⁻⁺ HNO₃,在 80~90 C下蒸发至干,加入 15 mL 乙醇、2 mL 水、3 mL 50%丙酸水溶液(体积比)、0.63 mmol 邻菲咯啉(phen)及 1.0 mmol 8-羟基喹啉(HQ)。静置一周析出晶体产物。HQ 必须加入,由于溶液呈酸性不加入 HQ 不能得到任何产物;因此,HQ 的作用之一是抑制溶液的酸度,由于 HQ 质子化成 H₂Q⁻(H 结合在氮上),使溶液中维持一定浓度的 CH₃CH₂COO⁻竞争取代出 NO₅⁻或 H₂O。值得注意的一点是,phen 也可能质子化。我们用 NaOH 来调节酸度合成实验失败,原因在于:一是酸度不好控制;二是随溶剂挥发,pH 值降低,往往析出含 8-羟基喹啉的配合物。用 HQ 作酸度抑制剂就不存在上述问题,但丙酸的浓度不能太高。

+ 通讯联系人。

⁽浙江大学化学系,杭州 310027)

收稿日期:1998-03-16。 收修改稿日期:1998-04-23。

第一作者:朱龙砚,男,34岁,副教授,博士,研究方向:配合物及分子设计,

;

1.2 晶体结构测定

选取尺寸大小近似为 0. 20 mm × 0. 20 mm × 0. 30 mm 的兰绿色棱柱形单晶用 Rigaku AFC 7R 四圆衍射仪收集数据。石墨单色化 MoKa 射线, λ =0. 071069 nm、扫描方式 $\omega/2\theta$, 2 θ 在 6° 到 50°。收集独立衍射点 3769 个,其中 3342 个 R_{inv} =0. 034。进行了线性校正、经验吸收校正、 LP 校正及第二消光校正(系数为 1. 10066e⁻⁶)。结构由重原子 Patterson 法和 Fourier 合成技术 解析、氢原子从差值 Fourier 图上找齐。非氢原子进行各向异性精修、氢原子包括其中但下精修。最后全矩阵最小二乘精修的可观察衍射点($I > 3\sigma(I)$)为 3302 个,274 个可变参数。R = 0.024。 $R_w = 0.034$,权重方案为 $\omega = 1/\sigma^2(F_o)$ 。所有计算使用 Molecular Structure Corporation 的 TEXSAN 晶体结构软件包。

2 结果和讨论

2.1 配合物的表征

配合物的 C、H、N 用 Carbo Erba 1106 型元素分析仪测定、金属离子 Pr³⁺ 含量用 EDTA 滴 定。实测值为:C,41.09%;H,3.43%;N,7.87%;Pr,26.66%;按[Pr(CH₃CH₄COO)₂(NO₃) (phen)]:分子式计算值为:C,40.69%;H,3.79%;N,7.91%;Pr,26.52%。

红外光谱测定用 KBr 压片,岛津 470 型红外光谱仪。自由 NO5 属于 D_{3h} 点群,配位 NOs 属 于 C_{2v} 点群。未观察到自由 NO5 的特征吸收峰,观察到配位 NO5 的四个特征峰 $B_1(\nu_1)$ 、 $A_1(\nu_1)$ 、 $A_2(\nu_3)$ 和 $B_2(\nu_4)$ 分别位于 1465 cm⁻¹、1292 cm⁻¹、1025 cm⁻¹和 818 cm⁻¹、 $L\nu = B_1(\nu_1) - A_1(\nu_1) =$ 173 cm⁻¹、显示 NO5 是双齿配位。邻非咯啉的环伸缩振动峰 1561 cm⁻¹、配位后在 1510 cm⁻¹: C-H 面外弯曲振动峰 ν_{CH} 856、742 cm⁻¹、配位后分别位移至 850 cm⁻¹和 730 cm⁻¹处。表明 phen 的氦参与了配位。丙酸根 CH₃CH₂COO⁻ 的 C-O 键之间的反对称和对称伸缩振动分别在 1580 cm⁻¹和 1420 cm⁻¹。 $L\nu = \nu_{A1} - \nu_{A} < 200$ cm⁻¹、按照 Deacon 的判断规则^[7]、丙酸根为桥式配位、即四 元配合物成双核或多核。

紫外光谱在室温下乙醇中用 DU-50 Buckman 紫外分光光度计测定,邻非咯啉在 227.5 ($\pi \rightarrow \pi^*$)和 261.5($n \rightarrow \pi^*$)m 处的吸收峰在形成配合物后分别移至 229.0 和 263.0 nm 处,表明 Phen 的共轭程度变化不大。

2.2 晶体结构描述

- - - - -

 $[\Pr(CH_3CH_2COO)_2(NO_3)(phen)]_2, Mr = 1062.56, 三斜, 空间群, Pl, 晶胞参数为 n = 0.9650(2) nm, b = 1.2949(4) nm, c = 0.8994(2) nm, a = 95.37(3)², \beta = 111.05(2)², p = 102.87(2)², V = 1.0037(5) nm³, Dc = 1.758 g/cm³, Z = 1, F(000) = 528, <math>\mu(MoK\alpha) = 24.64$ cm⁻¹, s = 1.59, ($\frac{1}{\sigma}$)_{mex} = 0.00, $\Delta\rho_{mex} = 500 \text{ e} \cdot \text{nm}^{-3}, \Delta\rho_{min} = -970 \text{ e} \cdot \text{nm}^{-3}$ 。分子结构见图 1。非氢原子座标与热参数、主要选择键长、键角列于表 1 和表 2。

配合物是双核分子,中心金属离子 Pr³⁺为9 配位,两个 Pr³⁺离子由丙酸根桥联。四个丙酸 根呈二种配位方式,其中二个是桥式双齿配位,另二个是桥式三齿配位。丙酸根端基碳无序,见 图 1 所示,图中以 C(18')、C(18)表示同一位置的碳,其占有率分别为 40%和 60%,二面角 O(6)-C(16)-C(17)-C(18)为 2°,O(6)-C(16)-C(17)-C(18')为 - 97.4°。 Pr-O(1)、 Pr-O(2)(NO₃)键长平均 0.257 nm。Pr³⁺与丙酸根氧的键长有三类,Pr-O(4)、Pr-O(5)键长平均 为 0.242nm,Pr-O(6)键长为0.2524nm,Pr-O(7)键长为0.2603nm;而在三元配合物Pr

١

.

朱龙观等, 镧系四元混合阴离子配合物 [Pr(CH₂CH₂COO)₂(NO₈)(phen)₂]合成和晶体结构

• 321 •

图1 [Pr(CH-CH₂COO)₂(NO₃)(phen)] 结构

Fig. 1 Perspective drawing of the title complex

表 1 [Pr(CH,CH,COO)₂(NO₁)(phen)]₂ 記合物原子座标和热参数

Table 1 Atomic Coordinates and Equivalent Isotropic Thermal Parameters ($> 100 \text{ nm}^2$)

atoms	3	ÿ	=	Beq
Pr	0.12659(2)	0.150932(1)	0.03606(2)	2.910(5)
0(1)	0.4233(4)	0.2120(3)	0.1630(4)	5.63(8)
O(2)	0.3168(4)	0.2103(3)	0.3342(4)	5.25(7)
O(3)	0.5594(5)	0.2884(4)	0.4138(5)	9.9(1)
0(4)	-0.0252(3)	0.1338(2)	0.2019(3)	4.05(6)
0(5)	0.1471(3)	0.0381(2)	-0.1800(3)	4.39(6)
O(6)	0. 1176(3)	0.1840(2)	-0.1551(3)	4. 47+6>
0(7)	0. 1435(3)	0.0156(2)	-0.1300(3)	3.69(5)
N(L)	0.4361(5)	0.2382(3)	0.307715>	5.32(9)
N(2)	0.2354(4)	0.2950(2)	-0.1186(4)	3.55(7)
N(3)	0.1553(4)	0.3574(2)	0.1302(4)	3.63(7)
C(1)	0.2843(5)	0.2680(3)	-0.2323(5)	4.39(10)
C(2)	0.3452(6)	0.3414(4)	-0.3127:6)	5.2(1)
C((3))	0.3533(5)	0.4471(4)	-0.2737(5)	4.8(1)
C(4)	0.3023(4)	0.4805(3)	-0.1555(5)	4.01(8)
C(5)	0.2465(4)	0.4015(3)	-0.0767(4)	3.39(7)
C(6)	0 2024(4)	0.4336(3)	0.0525(4)	3.41(7)
C(7)	0.2097(5)	0.5424(3)	0.0957(5)	4.07(8)
C(8)	0.2594(6)	0.6192(3)	0.0074(6)	5.3(1)
C(9)	0.3050(6)	0.5905(3)	-0.1103(6)	5.3(4)
C(10)	0 1687(6)	0.5716(3)	0 2231(6)	4.80(10)
C(11)	0.1251(6)	0.4957(3)	0.3051(5)	5.D(1)
C(12)	0.1180(6)	0.3881(3)	0.2525(5)	4.52(10)
C(13)	-0.1013(5)	0.0605(3)	0.2458(5)	4.01(9)
C(14)	-0.1347(8)	0.0909(4)	0.3935(7)	7.7(2)
C(15)	-0.1219(9)	0.2022(5)	0.4437(7)	8.1(2)
C(46)	-0.2014(5)	0.0911(3)	-0.1812(5)	4.07(9)
C(17)	-0.3746(7)	0.0644(5)	0.267(1)	9.7(2)
C(18)	-0.448(2)	0.125(1)	-0.321(2)	6.3(1)
((18))	0. 139(+)	0.0652(9)	0.124(2)	(0.6(5)

第15卷

atom	distance/nm	atom	distance/nm	atom	distance / nm
Pr O(1)	0.2570(3)	Pr-O(7)	0.2406(2)	Ö(4)-C(13)	0.1250(4)
PriO(2)	0.2569(3)	Pr-N(2)	0.2680(3)	O(5)-C(13)	0.1263(4)
Pr-O(4)	0.2430(2)	Pr-N(3)	0.2649(3)	U(6)-C(16)	0.1239(5)
Pr-O(5)	0 4 3(2)	O(1) N(1)	0.1269(5)	0(7)-C(16)	0.1274(4)
P7-0(6)	0.2524(3)	O(2)-N(1)	0.1240(5)		
Pr-O(7)	0.2603(3)	O(3)-N(1)	0.1214(5)		
angle	(*)	angle	(*)	angle	(°)
O(3)-Pr-O(2)	49.1(1)	O(1)-Pr-N(2)	69.39(10)	0(2)-Pr 0(7)*	75.72(9)
0(1) Pr-0(4)	121.8(1)	O(1) Pr-N(3)	83.4(1)	O(2)-Pr-N(2)	104. 92(10)
0(1) Pr-0(5)	87.2(1)	O(2)-Pr-O(4)	72.69(10)	O(2)-Pr N(3)	71 69(10)
O(1)-Pr O(6)	146.59(10)	O(2)-Pr-O(5)	127.9(1)	O(4)-Pr-O(5)	131.11(8)
O(])-Pr-O(7)	155.3(1)	O(2)-Pr-O(6)	139.88(9)	O(4)-Pr-O(6)	79.898(10)
O(1)-Pr-O(7)	87. 8(10)	O(2)-Pr-O(7)	137.53(9)	O(4)-P7-O(7)	70.58(9)
0(4)-Pr-0(7)*	75.34(9)	O(4)-Pr-N(2)	139.48:8)	O(4)-Pr N(3)	80. 24(8)
O(5) Pr-O(6)	92.03(10)	O(5) Pr-O(7)	72.02(9)	O(5)-Pr-O(7) *	75.38(9)
O(5) Pr N(2)	77.25(9)	O(5)-Pr-N(3)	138.50(9)	0(6)-Pr-0(7)	50.35(8)
0(6) Pr-0(7)**	124.89(8)	O(6)-Pr-N(2)	77.85(9)	O(6)-Pr-N(3)	75.29(9)
O(7) Pr-O(7)*	75.01(9)	O(7)-Pr-N(2)	116.78(9)	0(7)-Pr-N(3)	121.06(9)
O(7) Pr-N(2)	144.60(9)	O(7)-Pr-N(3)	143.79(9)	N(2)-Pr-N(3)	61.57(9)

表 2 主要键长和键角

Table 2 Selected Bond Distances in Nanometer and Bond Angles in Degrees

(CCl₃COO)₃(bipy)₂^[4]中为 0. 2534nm~0. 2618 nm。Pr-N(phen)键长平均为 0. 2665 nm。NO; 中 N(1)-O(1)、N(1)-O(2)和 N(1)-O(3)键长分别为 0. 1269、0. 1240 和 0. 1210 nm,表明 NO; 与 Pr³⁺配位后对其影响很大,但 O(1)、O(2)、O(3)和 N(1)仍在一个平面上,但 Pr³⁺不在此平面上,二面角 Pr-O(2)-N(1)-O(3)为 168.8°,标准 N=O 和 N-O 键长为 0. 120 nm 和 0. 140 nm ⁹¹、 表明 N(1)-O(3)键呈双键性质,N(1)-O(1)、N(1)-O(2)介于单键和双键之间。phen 处于空间空 旷一侧,使配合物十分稳定。Pr、O(6)、O(7)和 C(13)处于同一平面上.C(17)、C(18)偏离此平 面。Pr、O(7)、Pr⁺、O(7⁺)亦处于一个平面上。Pr、O(4)、O(5)和 C(13)处于一个平面.C(14)、C (15)偏离此平面,二面角 O(4)-C(13)-C(14)-C(15)为 19.2°。phen 在三个环上原子各自都处于 一个平面上,但环与环之间有 1~4°的扭曲。phen 环上的原子之间的键长与自由 phen 中的键长 相比有一定的变化,可以从表 2 分析。

9 配位 Pr³⁺有效离子半径^[10]为 0.1179 nm,4 配位 N³⁻ 为 0.146 nm,2 配位、3 配位 O²⁻ 分 别为 0.135 和 0.136 nm, Pr³⁺ + N³⁻ = 0.2639 nm, Pr³⁺ + O²⁻ (2 配位) = 0.2529 nm, Pr³⁺ -O² (3 配位) = 0.2539 nm, 与晶体结构解析键长比较, Pr-O(NO₅⁻)、 Pr-N 键长均大于有效离子 半径和, 配合物似不稳定, 但实际很稳定。

从晶体结构看,丙酸根取代出二个 NO₅ 是其最合理的结果(在我们合成的一系列卤代羧酸根取代出 NO₅ 的配合物均是如此)。在三元含杂环胺配合物中,若只有一个杂环胺配体配位,则往往形成双核配合物{如[Pr(CCl₃COO)₃(phen)·C₂H₅OH]₂)^[11],配合物中有一个溶剂分子,如要除去溶剂分子只能得到粉末产物,不能获得单晶。四元配合物中的一个 NO₅ 与上述三元配合物的溶剂分子有一定的相似之处。由此可见,如果 NO₅ 换成其它的阴离子,类似的四元配合物亦能合成。

5.

参考文献

- [1] Rogers R. D., Rollins A. N. Inorg. Chem. Acta, 1995, 230, 177.
- [2] ZHU Wen-Xiang(朱文祥), FEN Xuan(冯 暄), ZHANG Yi-Qun(章异群) et al Wuju Huarne Xuelan (('houese d. houro, ('hem,), 1962.8(2), 197.
- [3] DONG Nan(董 南), ZHU Long-Guan(朱龙观) et al Jiegou Huazue (Chanese J. Struct. Chem.), 1983, 12(2), 133.
- [4] Zhu Longguan, Xie Xuepeng, Yu Qingsen J. Rare Barth, 1999, 17(1), 16.
- [5] ZHU Long-Guan(朱龙观)、XIE Xue-Peng(谢学鹏)、YU Qing-Sen(俞庆森) Winge Huarue Xuebao (Chouese J. Inorg. (Nerm.), 1998.14(4).418.
- [6] Forsberg J. H. Coord. Chem. Rev., 1973, 18(3/4), 195.
- [7] Deacon G. B., Phillips R. J. Coord. Chem. Rev., 1880, 33, 227.
- [8] WANG Jun-Rui(王君瑞), DONG Nan(董 南), WU Guang(吴 光) et al Gaudeng Huezano Huazue Xuebno (Chem, J. Chauese Innuersatues), 1891, 12(10), 1284.
- [9] Paling, Translated by LU Jia-Xi(卢喜锡) et al The nature of the chemical bond and the structure of nucleoules and crystals (化学键的本质), Shanghai, Shanghai Science and Technology Press, 1968, p335.
- [10]Shannon R. D. Acta Cryst., 1976, A32, 751.
- [1]]Dong Nan, Wang Hong, Barton R. J., Robertson B. E. J. Courd. Chem., 1880, 22, 191.

SYNTHESIS AND CRYSTAL STRUCTURE OF QUATERNARY MIXED ANION COMPLEX OF LANTHANIDE [Pr(CH₃CH₂COO)₂(NO₃)(phen)₂]

ZHU Long-Guan YU Qing-Sen XIU Xue-Peng (Department of Chemistry, Zhe pang University, Hangzhow 310027)

The quaternary mixed anion complex of lanthanide $[\Pr(CH_3CH_2COO)_2(NO_3)\text{phen}]_2$ was synthesized and its crystal structure was determined by Rigaku AFC 7R. The crystal structure belongs to triclinic system with space group $P\overline{1}$, a=0.9650(2) nm, b=1.2949(4) nm, c=0.8994(2)nm, $a=95.37(3)^\circ$, $\beta=111.05(2)^\circ$, $\gamma=102.87(2)^\circ$, V=1.0037(5) nm³, Dc=1.758 g · cm⁻³, Z=1, F(000)=528, $\mu(MoK\alpha)=24.64$ cm⁻¹. The final R is 0.024 for 3302 $I>3\sigma(I)$. The four CH₃CH₂COO⁻ anions have two coordination modes. Two CH₃CH₂COO⁻ anions are bidentate-bridging coordination,

crystal structure

Keywords:

- - ----

mixed anion

praseodymim

complex