ş

Vol. 15, No. 3 May, 1999

希土离子取代对 Eu²⁺发光的影响

刘应亮·冯德雄 (暨南大学化学系,广州 510632)

0619.338

(中国科学院长春应用化学研究所稀土化学与物理开放实验室,长春 130022)

石春山

研究了具有磁铅矿和 β-Al=Os 结构的多铝酸盐基质中希土离子取代对 Eu²⁺发光的影响。结果表 明希土离子取代对 Eu²⁺的发射峰位置和强度产生了较大变化。特别在磁铅矿基质中、这种影响更为 显著。通过离子取代规则,获得了新的组成并具有 β-Al=Os 结构和磁铅矿结构的荧光体。

关键词:	多相酸盐	稀土离子	辅	取代	光谱	劣米。
分类号:	O 614, 33		辅	-	荧光体	

0 引 言

多铝酸盐体系中有两类重要的结构——磁铅矿和 β-Al₂O₃,两者均由密堆积的尖晶石基块 和大的阳离子构成的镜面层组成。两者最重要的差别是在镜面层,磁铅矿结构中的镜面层由— 个大的二价或三价阳离子、一个铝离子和三个氧离子组成,β-Al₂O₃结构中的镜面层由一个大 的二价或三价阳离子和一个氧离子组成。结构上的差别造成两者在电学和光学性质上的不同, 这两类结构的基质化合物都是重要的荧光和激光材料^[1~4],比如 BaMgAl₁₀O₁₇ : Eu²⁺就是希土 铝酸盐三基色发光材料中的蓝色组分^[5]。Eu²⁺依其离子半径的大小及电荷平衡主要占据磁铅 矿和 β-Al₂O₃结构中镜成层内 2d 位置上的大的阳离子格位,因此镜面层内阳离子大小和种类 的改变将对 Eu²⁺的发光产生较大的影响。我们系统研究了镜面层中阳离子的改变与 Eu²⁺发光 的关系。本文报道希土离子取代镜面层中的阳离子对 Eu²⁺发光的影响。

1 实验

研究所用试剂纯度除希土氧化物为 99、99%外,其余均为分析纯。合成采用高温固相法,称量一定量相关组分,加入丙酮或无水乙醇,使混合研磨均匀,装入刚玉坩埚中压实,采用倒立 法或双层坩埚法用碳粉还原 1~2 次,反应温度 1350~1500℃,反应时间 2~6 h。采用日本 D/max-3A型 X-射线粉末衍射仪确定样品的晶体结构。应用日立 MPF-4 型荧光分光光度计测

收稿日期,1998-09-02。 收修改稿日期,1998-12-21。

稀土化学与物理开放实验室、广东省自然科学基金(No. 970613)、国务院侨办基金(93-95-40)资助项目。

[・]通讯联系人。

第 作者;刘应亮,明、38岁、副教授、博士;研究方向;无机新材料及应用。

量样品的激发和发射光谱,使用广州有色金属研究院 93-07-01 型彩色分析系统确定荧光体的 色坐标。

2 结果与讨论

其中

· 372 ·

2.1 磁铅矿结构 SrAlgOrs中希土离子取代对 Eu²⁺发光的影响

SrAl₁₂O₁₀和 LaMgAl₁₁O₁₀都为磁铅矿结构 化合物,Sr²⁻离子半径(0.112 nm)与 La³⁺离子 半径(0.102 nm)相近,根据离子取代规则,预 计两者可在整个组成范围内形成连续固溶体, 这就为研究 Eu²⁺离子的发光随组成的变化及 其规律提供了条件。

取代按 Sr_{1-x}La_xMg_xAl_{12-x}O₁ : Eu²⁺ (x = 0.0, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0)方 式进行。X-射线衍射分析证实了上面的预测、 体系在 $0 \le x \le 1.0$ 的范围内形成完全固溶体。 晶胞参数随 x 的变化关系如图 1 所示、可见晶 胞参数 a 随 La³⁺取代的增加而增大、晶胞参数 c 则随 La³⁺取代的增加从 x = 0.10 起开始下 降。 c/a 值在 $3.692(x=0.0) \sim 3.925(x=1.0)$

Fig. 1 Dependence of lattice parameters on 2 in Sr₁₇.La,Mg,Ai₁₂₇,O₁₉

之间,属于磁铅矿结构的 c/a 值范围^[6]、说明生成的固溶体保持磁铅矿结构不变。

表1是 Eu²⁺发光与组成变化关系的实验结果。利用下列两式计算 La³⁺对 Sr²⁺取代的基质 镜面层中阳离子平均有效半径的变化值。

$$R_{\rm K} = R_0 + dK - 0.\ 00236K/Z \ \cdots \ \cdots \ \cdots \ \cdots \ \cdots \ \cdots \ (2)^{-1}$$

 $d = 0.1177 - 0.0081Z - 0.0347R_0 - 0.05ZR_0$

式中, R_{s} ²⁺、 R_{L} ³⁺分别为 Sr²⁺、La³⁺离子半径, z 为体系的组成, R_{0} 为自由离子半径, Z 为阳离子 价态, K 为配位数。先利用式(2)分别计算出 Sr²⁺、La³⁺离子半径, 再应用式(1)计算取代体系 中平均离子半径随基质组成 z 的变化, 计算结果列于表 1。

表 1	Sr _{2-x} La _x Mg _x Al _{22-x} O ₁₁ :Eu ²⁺ 体系中 Eu ³⁺ 发光与组成的关系
Table 1	Relation of Luminescence of Eu ¹⁺ with x in Sr _{1-x} La, Mg, Al _{12-x} O ₁₁

		absorption of 47 54			relative emission	
1	mean radius/nm	$/(\times 10^3 {\rm cm^{-1}})$	exclusion/nm	emission ' nm	intensity	
0.0	0. 159	26.32	296	402	19	
0. 05	0. 15 8	25.77	297	414	27	
0.10	0.157	25.00	317	423	30	
0.30	0.155	24. 39	319	435	55	
Ð. 50	0.152	24. 15	323	440	71	
0.70	0.149	23.92	323	446	81	
0.90	0.148	23.81	323	449	100	
1.0	0.144	23.75	323	452	78	

(3)

由表 1 可见,随 La⁴⁻对 Sr²⁺取代的增加,Eu²⁻的发射波长向长波方向产生十分明显的移动。Van Uitert^{18]}根据电子云扩大效应决定于激活离子和配位阴离子间的电子-电子斥力的观点,提出了计算低价希土离子(Eu²⁺和 Ce³⁻)最低 5d 激发带能量(E)的表达式:

$$\mathcal{B} = Q \left[1 - (V/4)^{1/2} 10^{-(\text{near}^{1/80})} \right]$$

式中 1 为离子价态, n 为阴离子数目或配位数, ea 为中心离子和配位阴离子的电子亲和力, r 为 基质阳离子半径, Q 为自由离子的最低激发带能量。从表 1 可以看出随 La³⁺对 Sr³⁺取代的增 加,阳离子平均半径减小, E 值将变小, 也即 4f⁶5d 能级重心降低, 意味着 Eu-O 键共价增强。由 于随 La³⁺对 Sr³⁺取代的增加阳离子平均半径减小, 因此 Eu²⁺所受的晶场强度也将增大, 4f⁶5d 能级劈裂增加。这是因为晶场劈裂大小与 R⁻⁶(R 为配体与中心离子的距离)成正比²⁻¹, R 的微 小变化引起晶场劈裂的较大变化。由此可见, 随 La³⁺取代的增加, Eu²⁺的晶场和共价都增强, 使得 Eu¹⁺的 4f⁶5d 吸收下限逐渐向低能方向移动,导致 Eu²⁺的发射能量逐渐降低(向长波方向 移动)。随 La³⁺取代的增加, Eu²⁺ 的相对发光强度逐渐增加, 至完全取代时发光强度降低, 这可 能是由于完全取代时 Eu²⁺进入 La³⁺离子格位使得电荷不平衡所致。

2、2 β-Al₂O₂ 结构 BaMgAl₁₀O₁₇中希土离子取代对 Eu²⁺发光的影响

在 BaMgAl₁₀O₁₇基质中希土离子对 Ba²⁺离子的取代用两种方式:Ba₁、Ln.MgAl₁₀O_{17+、0}和 Ba₁₂、Ln,K,MgAl₁₀O₁₇(Ln=La, Ce, Gd, Tb, Dy, Y; x=0.03, 0.05, 0.10, 0.15, 0.20, 0.30, 0.50)进行。

对于 Bat, Ln, MgAl₁₀O₁₇₊₄₂, X 射线衍射分析表明,当 x 超过 0.30 之后,存在较强的 α-Al₂O₈ 相与 μ-Al₂O₈ 结构基质多相共存。实验还表明, Dy³⁺ 在 BaMgAl₁₀O₁₇基质中没有特征激发和发射 存在, 而 Ce³⁺、Gd³⁺ 和 Tb³⁺在紫外区存在较强的激发和发射光谱。因此在这一体系中主要考 察 La⁴⁺、Y³⁻⁻、Dy³⁺取代对 Eu³⁺发光的影响, 表 2 是实验结果。表中基质阳离子平均半径按式 (1)和式(2)计算。由表 2 可见,在基质结构保持不变的范围内,随取代的增加,最低激发带和发 射波长均向低能方向移动, Eu²⁺的发射强度逐渐降低。按(3)式和 R^{--*}关系, Eu²⁻⁻的晶场和共价 随取代的增加而增强, 从而使得 Eu²⁺ 的最低激发带和发射波长向长波方向移动, 但这种移动 幅度相对磁铅矿基质中希土离子的取代要小得多。Eu²⁺发光强度降低可能是某种缺陷引起, 包 括镜面层中的间隙氧离子或尖晶石基块中的铝离子空位。如为前者,则取代可表达为 Ba₁、Ln, MgAl₁₀O₁₇₋₄₂, 若为后者,则取代表达式为 Ba₁₋Ln, MgAl₁₀₋₁₂₃, O₁₇₋₆根据 Eu²⁺发光强度随取 代的变化较大幅度降低可能应为间隙氧离子电荷补偿机制,因为镜面层中间隙氧离子靠 Eu²⁻⁻ 较近, 对 Eu²⁺发光影响较大, 而尖晶石基块内的 Al³⁻⁻空位离 Eu²⁺较远, 对 Eu²⁺发光的影响相对 较小。

表 2 Baj. Ln、MgAlieOit+x/e体系中希土离子取代与 Eul+发光的关系

Table 2 Relation of Substitution of Ln* for Ba** with the Luminescence of Eu^{++} in $Ba_{1,x}Ln_xMgAI_{10}O_x$

	mean	cation radi	us/nm	e	ceitation/n	n	e	mission/n	n	rela	tive inten	sity
I	La	Ŷ	Dy	La	Y	Dy	La	Y	Dy	La	Y	Dy
0.03	0.169	0.169	0. 69	381	381	381	447	448	448	100	97	98
0.05	0.169	0, 168	0、168	381	382	382	448	148	448	90	91	92
0.10	0.167	0.167	0.167	381	382	382	448	449	448	88	86	89
0.15	0.166	0.165	0.165	382	383	382	448	450	449	79	72	80
0. 2 0	0.165	0.164	0.164	383	384	383	450	451	450	6 0	55	64
0.30	0.162	0.161	0,161	383	384	384	450	452	451	50	42	47

对于 Ba₁₋₂, Ln,K,MgAl₁₀ O₁₇ 取代体系,以K⁺离子作为半径和电荷双重补偿剂,与 Ba₁₋,Ln,MgAl₁₀O_{17+4/2}体系相比,Eu²⁺的发光强度在 Ba₁₋₂,Ln,K,MgAl₁₀O₁₇取代体系中明显提高。 对于 Ln=La,Y,Dy,虽然随取代的增加,Eu²⁺的发光强度逐渐降低,但降低的幅度较小,对Ln == Tb,Gd,Ce,随取代的增加Eu²⁺发光强度降低幅度较大。以La 和 Ce 作为代表将实验结果列 于表 3。上已述及在 BaMgAl₁₀O₁₇基质中观察到 Tb³⁺、Gd³⁺、Ce³⁺离子在紫外区均有吸收,而 Eu²⁺离子在紫外区的吸收相对要强得多,因此共掺杂时 Eu²⁺几乎完全抑制了这三种离子的吸 收,在实验中观察不到 Tb³⁺、Gd³⁺的吸收和发射,Ce³⁺在 $z \ge 0.1$ 时开始出现 365 nm 发射,到 z=0.2 时发射比较明显。正因为如此,Eu²⁺和 Tb³⁺、Gd³⁺、Ce³⁺等共掺杂希土离子对激发能量 竞争吸收的结果,一方面希土离子的发光完全猝灭(Ce³⁺有很弱的发光),另一方面,Eu²⁺的发 光强度也大为降低。

由表 3 可见,随希土离子取代的增加,Eu²⁺的发射与最低激发向低能方向移动,这与我们

前面的讨论是一致的。另外,从表3看到的一 个结果是,对于 La³⁻⁻,随取代量的增加,Eu²⁺的 发光强度先降低,至 x=0.30 时又增加,我们 认为这可能与结构的转型有关,即随取代的增 加基质结构有由 β -Al₂O₃ 结构向磁铅矿结构过 渡的趋势,结构的转型可能对 Eu²⁺的发光有 利。同 Ba_{1-x}Ln_xMgAl₁₀O_{17+x/2}体系一样,在 $x \le$ 0.30 范围内, Ba_{1-2x}Ln_xK、MgAl₁₀O₁₇体系保持 β -Al₂O₄结构不变。当 x 大于 0.30 时,对于 Ba₁,Ln、MgAl₁₀O_{17-x/2}体系,Ln = La 形成 BaMgAl₁₀O₁₇和 LaMgAl₁₁O₁₉两相分离,Ln = Ce

图 2 Ba₁₋₂,Ln,K_xMgAl₁₀O₁₇体系的 X 射线衍射 Fig. 2 X-ray diffraction patterns of Ba₁₋₂,Ln_xK_xMgAl₁₀O₁₇(x=0, 50)

形成 BaMgAl₁₀O₁₇和 CeMgAl₁₁O₁₉两相共存、Ln=Y、Gd, Tb、Dy 形成 BaMgAl₁₀O₁₇、LnAlO₃和 a-Al₂O₃ 三相共存体系;对于 Ba₁₋₂₄Ln_xK_xMgAl₁₀O₁₇体系、至完全取代即 x=0.50 mol 时、Ln=La、Ce 形成单一相的磁铅矿结构化合物 La_{0.50}K_{0.50}MgAl₁₀O₁₇和 Ce_{0.50}K_{0.50}MgAl₁₀O₁₇、Ln=Y、Gd、Tb、 Dy 形成 a-Al₂O₃、MgAl₂O₄、KAl₁₁O₁₇和 LnAlO₅ 四相共存、X 射线衍射结果如图 2 所示。按照畸变 的磁铅矿 LnMgAl₁₁O₁₉的组成形式、La、Ce 和 K 对 Ba 的完全取代的组成形式可表达为 La_{0.50} K_{0.50}MgAl₁₁O_{18.5}和 Ce_{0.50}K_{0.50}MgAl₁₁O_{12.5},对比可知 La、Ce 取代形成的磁铅矿是缺氧的、可能在 尖晶石基块中存在氧的空位。表 4 是 X 射线衍射分析的结果。由表 4 可见,取代体系的 c/a 值 属于磁铅矿型结构 c/a 的范围。

表 3 Ball, Ln, K, MgAluOu中希土高子取代与 Eu'+的发光

Ln ³⁺	r/mol	mean radius/nm	excitation/nm	emission/nin	relative intensity
La ³⁺	0.05	0.169	381	447	110
	0.10	0.168	381	448	102
	0, 20	0.165	382	448	90
	0.30	0.163	382	45Q-	98
Ce ³⁺¹	0.05	0.169	381	447	90
	0. 10	0 . 168	381	447(365)	75
	0.20	0.165	381	450(365)	50
	0.30	0.162	382	450(365)	22

Table 3	Relation of Substitution of Ln	+ for Ba ⁺⁺ with the	Luminescence of Eu ⁺⁺	in Ba _{1-2x} La _x K _x MgAl ₁₀ O ₁ ,
---------	--------------------------------	---------------------------------	----------------------------------	--

Note, Values in parenthesis the the emission of Ce^{3+} species.

• 375 •

	Table 4	Structure and Parameters of Hosts					
hosts	structure	lattice parameters /nm	£/a	reference			
Lan 50K0, 50MgAl 10O17	magnetoplumbite	a=0.5607 c=2.201	3, 925	this work			
LaMgAILO	magnetoplumble	a = 0.5940 $c = 2.199$	3, 391	[9]			
Ceu 30Ku 50MgA110O17	magnetoplumblie	a = 0.5603 $c = 2.194$	3, 916	this work			
CeMgAluOn	magnetoplumbite	a = 0.5610 $c = 2.199$	3, 920	[9]			

表 4 基质的结构和晶胞参数

图 3 是 Ln₀ $_{50}$ Ku_{.30}MgAl₁₀O₁₇(Ln=La, Ce) 体系中 Eu²⁺的激发和发射光谱,最大发射波 长分别为 450 nm 和 453 nm,两者的最大激 发峰波长在 325 nm 附近。两者的激发和发射 具有相似的形状,我们通过组分调节使 Eu²⁺ 在 Ceu $_{50}$ Ku_{.50}MgAl₁₀O₁₇基质中也获得了较强 的发光,Ce³⁺的激发和发射则没有观察到,可 能是 Eu²⁺的强吸收抑制了 Ce³⁺的激发和发 射,使 Ce³⁺的荧光完全猝灭。

我们运用离子取代规则,经过系列化研 究获得了几种新的组成并具有 β-Al₂O₃ 结构 和磁铅矿结构的荧光体,结果如表 5 所示。

⁻⁻⁻⁻⁻ La ------ Ce

图 3 Lna saKa saMgAluOn的激发(a)和发射(b)光谱

Fig. 3 Excitation (a) and emission (b) spectra of Eu^{2+}

in Ln_{0.50}K_{0.50}MgAl₁₀O₁₇(Ln≕La, Ce)

表 5 蓝色荧光体结构和发光性能	
------------------	--

Table 5 Structure and Luminescent of the Blue-emitting Phosphors

host composition	structure	emission /am	half high width /nm	relatvie Intensity	chromaticity r	coordinates.
BaMgAIttoOrt	beta-alumina	450	54	100	0.1460	0.08034
BB0 4DY0.3K0.3MgA110O17	beta-alumina	452	54	72	0.1470	0.08534
Las, 3K0, 5MgAI10017	magnetoplumbite	450	66	78	0. 1499	0.09633
Cet. 5Ka 5MgAl10017	magnetoplumbite	453	62	47	0.1502	0. 1152

[1] Weiker T. J. Luman. , 1991, 48 & 49, 49.

[2] Abrahams S. C., Marsh P. Brandle C. D. J. Chem. Phys., 1987, 86, 4221.

[3] Kahn A., Leijus A. M., Madsac M. et al J. Appl. Phys., 1981, 52, 6864.

[4] Laberge M., Simkin D. J., Dunn B. Chem. Phys. Lett., 1981, 182, 159.

[5] Verstegen J. M. P. L. J. Electrochem. Soc., 1974, 121, 1623.

[6] Verstegen J. M. P. L. J. Lumm., 1974, 9, 406.

[7] Ziolkowski J. J. Solut State Chem., 1985, 57, 269.

[8] Van Uetert L. G. J. Lumm., 1984, 29, 1~6.

[9] Shanter H. L., Genima G., translated by ZENG Cheng(曾一成) Basic processed of liquid field theory (配位场理论基

第15卷

本原理), Nanjing: Jiangsu Science and Technology Press, 1982. [10]Stevels A. L. N. et al J. Laman., 1978, 14, 207.

EFFECT OF SUBSTITUTION OF RARE EARTH IONS ON THE LUMINESCENCE OF Eu²⁺

LIU Ying-Liang * FENG De-Xiong

(Department of Chemistry of Jaam Conversity, Guangzion 510632) SH1 Chun-Shān (Laboratory of Rare Earth Chemistry and Physics, Changchan Institute of Applied Chemistry,

Academia Soura, Changetun 130022)

Substitution of the cations with rare earth ions in the polyaluminates with beta-alumina and magnetoplumbite structures was studied. The photoluminescent study on Eu^{2-} doped materials shows that the absorption band, emission spectra and emission intensity depend strongly on the substitutions, especially in the magnetoplumbites. The new phosphors with beta-alumina and magnetoplumbite structure are obtained with the aid of ionic substitution law.

Keywords,

polyaluminates

rare earth ions

europium (1)

substitution

spectra