Schiff 碱与锰(II)的单核和双核配合物的合成与结构

维普资讯 http://www.cqvip.com

张存根" 冷拥军

(上海交通大学化学化工学院,上海 200240)

顾建明 徐端均 徐元植

(浙江大学化学系,杭州 310027)

本文报道合成了以水杨醛及邻香草醛缩丙醇胺 Schiff 碱与锰(I)的六个新型配合物,其中 [Mn₂(salpa)₂(PhCOO)₂]·2CH₂Cl₂, [Mn₂(vanpa)₂(PhCOO)₂]·2CHCl₃, [Mn₂(vanpa)₂(ClCH₂COO)₂] (H₂vanpa 为邻香草醛缩丙醇胺; H₂salpa 为水杨醛缩丙醇胺)三个为双核, [Mn (Hsalpa)₂(H₂O) Cl], [Mn (Hvanpa)₂(H₂O) Br]和[Mn (Hsalpa)₂(NCS)]三个为单核。并对配合物的合成进行了讨论,同时对 配合物的红外光谱进行了归属。对配合物[Mn₂(vanpa)₂(PhCOO)₂]·2CHCl₃进行了单晶结构测定, 其锰与锰间的距离为 2.848 Å, 对配合物的磁距也进行了测定。

关键词: 适 配合物 Schiff 碳 红外光谱 晶体结构 磁矩 分类号: 0614.7 **尔省草醇圣沼 丙醇 胺 席 席夫衣族 实体 2014** 锰的配位化学由于其生物功能,而愈来愈引起人们的广泛兴趣。在某些生物酶中,锰的配 位环境多为咪唑的氮和羧基及水分子的氧原子配位^[1,2]。由于 Schiff 碱以氮原子和氧原子配

位环境多为咪唑的氮和羧基及水分于的氧原于配位""。由于 Schiff 碱以氮原子和氧原子配位,与生物环境接近,在模型配合物研究方面,以多齿 Schiff 碱为配体的锰的配合物,特别是以水杨醛及其衍生物的配合物的研究较多^[3~5]。

1 实验部分

0614.71

1.1 试剂与仪器

水杨醛、邻香草醛和丙醇胺为化学纯。氯化锰、硫氰酸铵和乙醇为分析纯。苯甲酸锰为实 验室自制。

元素分析采用 PE-240 元素分析仪、测定 C、H、N 的含量,锰的含量用配位滴定测定。红外 光谱分析仪为岛津 IR-470,KBr 压片。磁化率的测定采用复旦大学 FD-MT-A 法拉第天平。X-射线单晶结构分析在 Enraf-Nonius CAD-4 四圆衍射仪上进行。

1.2 合成

1.2.1 [Mn₂(salpa)₂(PhCOO)₂] · 2CH₂Cl₂,1的合成

将 1.22 g, 10 mmol 的水杨醛与 0.75 g, 10 mmol 的丙醇胺混合于 25 ml 的乙醇溶液中,加

* 通讯联系人。

收稿日期:1998-09-24。 收修改稿日期:1998-11-09。

上海市科技发展基金资助项目(98JG05042)。

第一作者;张存根,男,35岁,副教授;研究方向;锰配合物,

维普资讯 http://www.cqvip.com

热回流 30 分钟,得黄色溶液,向该溶液中加入 3.33 g, 10 mmol 苯甲酸锰,在 60 C的温度下搅 拌 30 分钟,向该溶液中加入三乙基胺 1 ml,继续搅拌,得到绿色的溶液,将该溶液过滤后放置, 使溶剂分子自然挥发,得油状物,将该物用 CH₂Cl₂ 溶解后过滤,得绿色溶液,放置于暗处,使二 氯甲烷分子缓慢挥发,即得方块形的单晶。元素分析(%)实验值:C 50.16,H 4.18,N 3.26, Mn 12.32;理论值:C 49.33,H 4.14,N 3.20,Mn 12.54。红外光谱(cm⁻¹);3050(w),3010 (w),2900(w),2850(w),1615(s),1590(s),1555(s),1440(m),1390(s),1300(s),1200 (m),1144(m),1125(w),1068(s),980(m),908(m),758(s),724(s),

1.2.2 [Mn₂(vanpa)₂(PhCOO)₂] · 2CHCl₃, 2的合成

合成方法同 1,只是将邻香草醛代替水杨醛。最后得到绿色晶体。元素分析(%)实验值:C 45.44,H 3.99,N 2.72,Mn 10.50;理论值:C 45.40,H 4.01,N 2.79,Mn 10.93。红外光谱 (cm⁻¹): 3050(w), 3000(w), 2900(m), 2850(w), 1615(s), 1588(s), 1545(s), 1460(s), 1450(s), 1440(s), 1375(s), 1315(s), 1250(s), 1220(s), 1165(w), 1080(s), 1060(s), 950 (m), 870(m), 735(s), 670(m), 630(s), 610(s), 485(w), 420(w)。

1.2.3 [Mn₂(vanpa)₂(ClCH₂COO)₂],3的合成

将 1. 22 g, 10 mmol 的水杨醛与 0. 75 g, 10 mmol 的丙醇胺混合于 30 ml 无水乙醇中,加热 回流 30 分钟,向该溶液中加入 3.6 g, 10 mmol 的高氯酸锰,搅拌 30 分钟,加入三乙基胺 1 ml, 有沉淀产生,继续搅拌使沉淀溶解,即得绿色溶液,向该溶液中加入三乙基胺 1 ml 和氯乙酸 1 g, 10.5 mmol,搅拌 1 小时,将该溶液过滤,放置于暗处,约 5 天后有晶体产生。元素分析(%) 实验值:C 44.05, H 4.28, N 4.01, Mn 15.50;理论值:C 43.89, H 4.25, N 3.94 Mn 15.45。红 外光谱(cm⁻¹): 3000(w), 2950(m), 1545(s), 1460(w), 1440(s), 1390(m), 1355(w), 1295 (s), 1230(w), 1205(w), 1150(w), 1130(w), 1065(s), 1030(w), 980(m), 930(w), 905 (m), 895(m), 860(s), 630(s), 605(s), 570(w), 525(m), 470(w), 435(w)。

1.2.4 [Mn(Hsalpa)₂(H₂O)Cl], 4的合成

将 1. 22 g, 10 mmol 的水杨醛与 0. 75 g, 10 mmol 的丙醇胺混合于 30 ml 无水乙醇中,加热 回流 30 分钟,向该溶液中加入 2.0 g, 10 mmol 的 MnCl₂ · 4H₂O,并加入 1 ml 三乙基胺继续搅 拌 1 小时,得到棕色的溶液,过滤将此滤液放置,让溶剂缓慢蒸发,得标题化合物。元素分析 (%)实验值:C 51. 52, H 5. 48, N 6. 03, Mn 11. 81;理论值:C 51. 68, H 5. 64, N 6. 03, Mn 11. 82。红外光谱(cm⁻¹):3440(s), 3280(s), 2930(w), 2850(w), 1615(s), 1600(s), 1545(m), 1460(m), 1440(m), 1395(m), 1330(w), 1295(s), 1205(m), 1150(m), 1130(m), 1100(w), 1060(s), 1030(w), 980(m), 940(m), 900(m, 840(m), 800(m), 775(s), 730(s), 715(s), 675(m), 625(m), 450(w), 405(m),

1.2.5 [Mn(Hvanpa)₂(H₂O)Br],5的合成

合成方法同 3,只是将溴化四丁基胺代替象 乙酸。元素分析(%)实验值:C 46.47,H 5.38、 N 4.95,Mn 9.43;理论值:C 46.43,H 5.27,N 4.92,Mn 9.66。红外光谱(cn⁻¹):3560(s), 3460(m),3140(s),2980(w),2940(w),2929(m),2830(w),1615(s),1600(s),1545(s), 1465(s),1445(s),1420(w),1405(m),1395(s),1240(m),1290(s),1275(m),1250(s), 1225(s),1190(m),1165(m),1095(m),1080(s),1070(s),1045(s),975(m),945(s) 905 (s),860(s),810(m),780(m),740(s),635(s),620(w),580(m),530(m),475(m,460 (m),435(w)。 ł

1.2.6 [Mn(Hsalpa)₂(NCS)],6的合成

合成方法同 3,只是将水杨醛代替邻香草醛,将硫氰酸铵代替氯乙酸。元素分析(%)实验 值:C 53.63,H 5.32,N 8.71,Mn 11.56;理论值:C 53.73,H 5.15,N 8.95,Mn 11.70。红外 光谐(cm⁻¹):3400(m),3280(m),2930(w)、2850(w),2060(s),1615(s),1600(s),1540 (m),1458(w),1440(m),1390(w),1330(w),1295(s),1205(m),1150(m),1130(m), 1060(s),1030(w),980(m),930(m),910(m),845(m),795(m),760(s),635(s),610(s), 570(m),530(m),470(m)。

1.3 X-射线单晶结构测定

晶体学衍射数据的测定是在四圆衍射仪上进行。使用石墨单色化的 Mo-Ka 射线(A= 0.71073Å)用 a-20 扫描收集强度数据。共收集到 4107 个衍射点(20<50.4°),其中 3677 个为 独立的衍射点、可观测的衍射点为 2514 个[I>3σ(I)],它们被用来进行结构修正,并 Lp 校正 的经验吸收校正。结构的解析采用直接^[*]法并进行 Fourier 合成。晶体学数据见表 1。

表 1 配合物[Mn₁(vanpa),(PhCOO),]·2CHCl,的晶体学数据

formula	$C_{38}H_{38}N_2O_{10}Cl_6Mn_2$
molecular weight	1005.33
crystal system	monoclinic
space group	P21/c
a/À	10.929(1)
b∕ Å	19.998(2)
c/ À	9.778(1)
β/(°)	90.51(1)
v v	2137.2(6)
Z	2
$D_{calc}/(g + cm^{-1})$	1.562
F(000)	1024
µ/cm ^{−1}	10.01
temperature/K	293
No. observations $(I) > 3\sigma(I)$	2514
No. variables	262
R	0.0659
Rw	0. 0691
goodness of fit indicator	2. 430
max. shift in final cycle (Δ/σ)	0. 01
largest peak in final diff. map $(e + \dot{A}^{-1})$	0.841

Table 1 Crystal Structure Parameters for [Mn₂(vanpa)₁(PhCOO)₂] • 2CHCl₁

2 结果与讨论

2.1 合成

水杨醛或邻香草醛与1,3-丙醇胺发生缩合反应生成如下结构的 Schiff 碱。

$$R \xrightarrow{OH} CH \xrightarrow{CH} N \xrightarrow{(CH_2)_3} OH$$

$$R \xrightarrow{H, OCH_3}$$

图 1 Schiff碱的结构图

Fig. 1 Proposed structure for Schiff bases

第15巻

这一类的配体与低氧化态的羧酸锰盐发生配位反应过程中,在有机碱的存在下,羧酸锰被 空气中的氧气氧化成较高氧化态的锰,如 Mn(Ⅱ),Mn(Ⅳ)等。如果控制羧酸锰盐的量稍多一 点,就可能得到1:1的化合物,生成结构如下的产物。

图 2 Schiff 碱双核锰配合物结构图

Fig. 2 Proposed structure for dimeric manganese complexes

其中 R 为 H 或 OCH₃, R' 为烃基, 如一CH₃, 一 Ph。但当有卤素阴离子或拟卤素阴离子存在时, 如 NCS⁻, Cl⁻, Br⁻有时会得到单核的锰配合物。 如 我们合成的[Mn(Hsalpa)₂(H₂O)Cl], [Mn(Hsalpa)₂ (NCS)]等。对于配合物[Mn(Hsalpa)₂(NCS)],其 结构为一个 Schiff 碱是双齿配位, 另一个 Schiff 碱 为三齿配位, 结构如图 3 所示:

2.2 红外光谱

所有六个配合物在 1615 cm⁻¹左右的强的吸 收峰为双键 C=N 的振动吸收。它们在 3050 cm⁻¹

图 3 单核锰配合物的结构图

Fig. 3 Proposed structure for monomeric manganese complexes

和 3010 cm⁻¹左右的吸收峰分别为芳环上的 ν_{c-H} 伸缩振动吸收,在 2900 cm⁻¹和 2850 cm⁻¹处的 吸收可归属为亚甲基的 ν_{c-H} 振动吸收。配合物在 470~450 cm⁻¹左右的吸收峰为 Mn-O 振动吸 收^[7]。

对于含羧基的配合物,其配位形式不同,则红外振动吸收光谱也有所不同,一般羧单齿配位时,其羧基的不对称伸缩振动吸收频率 v_{a} (COO)与对称伸缩振动频率 v_{a} (COO)之差 dv大于 200 cm⁻¹,而当羧基发生双齿配位时(双齿螯合或双齿桥联时),则其不对称伸缩振动吸收频率 v_{a} (COO)与对称伸缩振动频率 v_{a} (COO)之差 dv小于 200 cm⁻¹。配合物 1,2 和 3 其羧基的不对称振动吸收频率 (COO)之差 dv小于 200 cm⁻¹。配合物 1,2 和 3 其羧基的不对称振动吸收频率(分别为 1550, 1545 和 1575 cm⁻¹)和对称振动吸收频率(分别为 1440,1440 和 1440 cm⁻¹)两者之间之差 dv<200 cm⁻¹,这表明羧基不是单配,而是以 syn-syn 桥式双配在两 个锰核上(见下面晶体结构分析)^[8,8]。

对于配合物 4,我们看到在 3550 cm⁻¹,3450 cm⁻¹,3300 cm⁻¹处的吸收峰为酵类的羟基振 动吸收峰和配位水分子的 von吸收,这些峰为中等强度,有时可能很强,而且较为尖锐,往往暗 示配体中的羟基有没有脱氢,这也可以用来判断有没有形成双核的配合物。配合物 5,6 它们的 红外光谱中也有如 4 的酵羟基的振动吸收^[10]。

配合物 6 在 2070 cm⁻¹处为 www.sb板动吸收,表明为氮原子配位,这一吸收峰常被用来判断 NCS⁻ 是氦原子配位还是硫原子配位。我们已通过 X-射线单晶结构分析证明了 N 配位这一情况^[11]。

• 587 ·

2.3 [Mn₂(vanpa)₂(PhCOO)₂]·2CHCl₃的晶体结构讨论

配合物的分子结构如图 4 所示,键长和键角列于表中。分子是由双核锰组成的结构,锰与 锰之间的距离为 2.848 Å,比[Mn₂(salpa)₂(PhCOO)₂](2.855 Å)^[12]和[Mn₂(salpa)₂(AcO)₂] (2.869 Å)稍短^[13]。锰(I)原子是由两个醇氧基的氧原子桥联起来的,锰的配位几何构型为一 个拉长的八面体结构,Mn-O1=1.911(3) Å, Mn-O1^{*}=1.974(3) Å, Mn-O2=1.856(3) Å, Mn-N1=2.007 Å,与其它锰(I)配合物在赤道平面上的键长相似,围绕锰核的配位原子形成 的键角落在 83°到 97°之间,与文献报道的相似。轴向上的键长为 2.193(3) Å 和 2.203(4) Å,比 赤道平面上的键要长 0.3 Å 左右,这表明围绕锰原子的配位几何明显偏离了正常的八面体构 型,这种拉长的四方畸变是由 Jahn-Teller 效应引起的。由于分子存在对称中心,所以所构成的 Mn₂O₂ 四员环形成一个很好的平面,这与下表所列的核的键角一致。

		Talbe 2	Positional Pa	rameters for	Comple	ex [Mn ₁ (vanp	a),(PhCOO)),]	
atom	<i>x</i>	y	z	Beq/Å ²	atom	x	3	2	Beg / Å ²
Mn	0.44034(9)	0.55328(5)	0.4295(1)	2.37(2)	C6	0.3732(7)	0.7777(4)	0.3484(8)	3.7(2)
C11	0.0097(3)	0.3814(2)	0.6694(4)	9.22(9)	C7	0.2991(7)	0.8117(4)	0.4369(8)	3.9(2)
C12	-0.1091(4)	0.4450(2)	0.8891(4)	11.2(1)	C8	0.2236(7)	0.7782(4)	0.5298(8)	3.5(2)
C13	0.0178(3)	0.5250(1)	0.6901(5)	9.6(1)	C9	0.2248(6)	0.7085(3)	0.5364(7)	3.0(1)
01	0.5870(4)	0.5025(2)	0.4071(4)	2.45(9)	C10	0.0627(8)	0.7063(4)	0.6976(9)	4.6(2)
02	0.3026(4)	0.6052(2)	0.4604(5)	2.79(9)	C11	0.3040(6)	0.6717(3)	0.4507(7)	2.5(1)
03	0.1540(5)	0.6708(3)	0.6193(5)	3.7(1)	C12	0.3681(6)	0.4098(3)	0.3434(7)	3.0(1)
04	0.3475(4)	0.4717(2)	0.3203(5)	3.1(1)	C13	0.3023(6)	0.3596(3)	0.2533(7)	2.7(1)
05	0.4432(4)	0.3869(2)	0.4320(5)	3.1(1)	C14	0.2372(7)	0.3803(4)	0.1411(7)	3.5(2)
N1	0.4760(5)	0.6074(3)	0.2617(6)	2.9(1)	C15	0.1796(8)	0.3325(4)	0.0554(8)	4.3(2)
C1	0.6352(7)	0.4808(4)	0.2805(7)	3.2(1)	C16	0.1902(8)	0.2655(4)	0.0888(9)	4.3(2)
C2	0.6561(7)	0.5399(4)	0.1876(7)	3.8(2)	C17	0.2552(7)	0.2451(4)	0.2035(9)	4.0(2)
C3	0.5372(7)	0.5760(4)	0.1428(8)	4.0(2)	C18	0.3120(7)	0.2919(3)	0.2840(8)	3.4(2)
C4	0.4484(6)	0.6708(4)	0.2577(7)	3.1(1)	C19	-0.0695(8)	0.4531(5)	0.716(1)	6.6(3)
C5	0.3774(6)	0.7061(3)	0.3559(7)	2.7(1)					

成一个 ff 文丁的平面,这一下衣房外的衣的硬用一致。 表 2 配合物[Mn,(vanpa),(PhCOO),]的坐标及热参数 Taibe 2 Positional Parameters for Complex [Mn,(vanpa),(PhCOO)

正如红外光谱所推测的那样,苯甲酸根的羧基以 syn-syn 构型与两个锰核发生桥联,这与[Mnz (salpa)₂(AcO)₂]中的羧基相同^[13]。两个苯甲酸根 配体分别位于烃氧基配位形成的 Mn₂O₂ 双核结构 单元的上方和下方。由于羧基的两个氧原子之间 的距离为 2. 268(6) Å,小于 Mn…Mn 之间的距离 (2. 848 Å),所以锰与羧基氧形成的配位键要偏离 赤道平面的垂线几度,如 O4-Mn-O5*为 164.8°。

配合物中羧基的键长分别为 1. 279 Å 和 1. 273 Å,它们近乎相等,这表明羧基之间存在大 π 共轭。C12-C13=1. 513 Å 是一个单键的键长,而 且苯环与羧基的最小二乘平面的二面角为 10. 3°, 表明苯环与羧基没有发生共轭。这与我们所报道 的烟酸、异烟酸的配合物中吡啶环与羧基的情况 相同,它们都不发生共轭^[14,15]。

- 图 4 配合物[Mn₂(vanpa)₂(PhCOO)。]的分子 结构图
- Fig. 4 Molecular structure for complex [Mn₂(vanpa)₂(PhCOO)₂]

第15卷

维普资讯 http://www.cqvip.com

atoma	distances	atoms	distances	atoms	distances	Btoms	distances
Mn····Mn	2.848(1)	C11-C19	1.738(7)	N1-C3	1. 487(6)	C8-C9	1.395(6)
0101.	2.644(5)	C12-C19	1.757(8)	N1-C4	1.304(6)	C9-C11	1.416(6)
Mn-01	1.91(3)	CI3-C19	1.745(6)	C1-C2	1.509(6)	C12-C13	1.513(6)
Mn-01	1.974(3)	01-C1	I. 417(5)	C2-C3	1.546(7)	C13-C14	1.366(6)
Mn-O2	1.856(3)	O2-C11	1.334(5)	C4-C5	1.428(6)	C13-C18	1.390(6)
Mn-04	2.193(3)	O3-C9	1.355(6)	C5-C6	1.435(6)	C14-C15	1.416(7)
Mn-05 •	2.203(4)	O3-C10	1.449(6)	C5-C11	1.410(6)	C15-C16	1,383(8)
Mn-N1	2.007(4)	O4-C12	1. 279(6)	C6-C7	1.371(7)	C16-C17	1.384(7)
		O5-C12	1.273(6)	C7-C8	1.404(7)	C17-C18	1.370(7)

表 3 配合物[Mn,(vanpa),(PhCOO),]·2CHCl, 的键长(Å) Table 3 Bond Distances for Complex [Mn,(vanpa),(PhCOO),]·2CHCl, in Ansstr

表4 配合物[Mn₂(vanpa)₂(PhCOO)₂]·2CHCl, 的主要键角(*)

Table 4 Bond Angles for Complex [Mn₂(vanpa)₁(PhCOO)₂] • 2CHCl₂ in Degrees

atoms	angle	Betoms	angle	atoms	angle	atoms	angle
Mn-Oj-Mn*	94.2(1)	01-Mn-05*	83.0(1)	01 • -Mn-05 •	84.3(1)	02-Mn-N1	89.7(1)
01-Mn-01	85.8(1)	01-Mn-N1	91.3(1)	01 • -Mn-N1	177.1(1)	04-Mn-05*	164.8(1)
01-Mn-02	176.4(1)	01 ° -Mn-O2	93.2(1)	02-Mn-04	97.1(1)	04-Mn-N1	95, 5(1)
01-Mn-04	86.2(1)	01 • -Mn-O4	84.3(1)	O2-Mn-O5*	93.5(1)	05*-Mn-N1	95.4(1)

2.4 磁距的测量

配合物 1~3 在室温下的有效磁距分别为 3.85, 3.89 和 4.12 BM。而配合物 4~6 在室温下的有效磁距分别为 4.84, 4.87 和 4.96 BM。从测试结果看,配合物 1~3 的磁距比 4~6 要低,这主要是由于双核锰(II)之间存在着反铁磁性自旋交换相互作用引起的。而 4~6 在室温下的磁距都接近 4.9 BM。这是具有高自旋 4⁴ 电子结构 Mn(II)离子的理想值。这一现象是没有磁交换作用的单核 Mn(II)配合物的一个特征^[16]。

参考文献

- [1] Kono Y., Fridovich I. J. Biol. Chem., 1983,258,6015.
- [2] Gohdes J. W., Armstrong W. H. Inorg. Chem., 1992, 31, 368.
- [3] Yu S. B., Wang C. P., Day E. P., Holm R. H. Inorg. Chem., 1991, 30, 4067.
- [4] Matsumoto N., Takemoto N., Ohyosi A., Okawa H. Bull. Chem. Soc. Jpn., 1988, 61, 2984.
- [5] Matsumoto N., Zhuang J. Z., Okawa H., Kida S. Inarg. Chum. Acta., 1989,160,153.
- [6] Gilmore C. J. J. Appl. Cryst., 1984, 17, 42.
- [7] Li M. X., Xie G. Y., Jin S. L., Gu Y. D., Chen M. Q., Liu J., Xu Z., You X. Z. Polyhedron, 1996, 15, 535.
- [8] Torihara N., Mikuriya M., Okawa H., Kida S. Bull. Chem. Soc. Jpn., 1980, 53, 1610.
- [9] JIANG Zong-Hui(姜宗慧), MA Shu-Lin(马书林), LIAO Dai-Zheng(廖代正), YAN Shi-Ping(阎世平), WANG Gen-Lin(王耕霖) et al Zhongguo Kerne (Science in Chana) (B), 1993, 23, 1009.
- [10]Boucher L. J., Farrell M. O. J. Inorg. Nucl. Chem., 1973, 35, 3731.
- [11]ZHANG Cun-Gen(张存根), WU Yi-Hua(吴益华), XU Duan-Jun(徐端均), XU Yuan-Zhi(徐元植) Wuja Huazue Xuebao (Chanese J. Inorg. Chem.), 1998, 14(4), 431.

第5期

[12]ZHANG Cun-Gen, ZHOU Quu-Hua, MENG Qing-Hua, Xu Duan-Jun, XU Yuan-Zhi Synth. React. Inorg. Met. ~ Org. Chem., 1999, 29, 865.

[13]Mikuriya M., Torihara N., Okawa H., Kida S. Bull. Chem. Soc. Jpn., 1981, 54, 1063.

[14]ZHANG Cun-Gen, XU Duan-Jun, XU Yuan-Zhi, HUANG X1ao-Ying Acta Crystallogr., 1998, C52, 591.

[15]XU Duan-Jun, ZHANG Cun-Gen, XU Yuan-Zhi, HUANG Xuao-Ying. Polyhedron, 1997, 18, 71.

[16] Bermejo M. R., Peret M. C., Maneiro F. M. Synth. React. Inorg. Met. - Org. Chem., 1997, 27(7), 1009.

SYNTHESIS AND CHARACTERIZATION OF THE MONO- AND DI-MERIC COMPLEXES OF Mn(II) WITH TRIDENTATE SCHIFF BASE LIGANDS; L (L=N-(3-HYDROXYPROPYL) SALICYDENIMINE, N-(3-HYDROXYPROPYL)-3-METHOXYL-SALICYDENIMINE)

ZHANG Cun-Gen* LENG Yong-Jun

(College of Chemistry and Chemical Engineering, Shangha Jiaolong University, Shangha 200240) GU Jian-Ming XU Duan-Jun XU Yuan-Zhi (Department of Chemistry, Zhe pang University, Hangzhou 310027)

Six new complexes of Schiff base ligands, N-(3-hydroxypropyl) salicydenimine (H₂salpa) and N-(3-hydroxypropyl)-3-methoxyl-salicydenimine (H₂vanpa), coordinate to manganese (I) are synthesized, among which [Mn₂(salpa)₂(PhCOO)₂] · 2CH₂Cl₂, [Mn₂(vanpa)₂(PhCOO)₂] · 2CHCl₃ and [Mn₂ (vanpa)₂ (ClCH₂COO)₂] are dimeric complexes, while [Mn(Hsalpa)₂ (H₂O) Cl], [Mn(vanpa)₂(H₂O)Br] and [Mn(Hsalpa)₂(NCS)] are monomeric complexes. Their IR spectra have been assigned. The synthetic procedure is also discussed. [Mn₂(vanpa)₂(PhCOO)₂] · 2CHCl₃ is determined by X-ray crystal structural analysis. The Mn···Mn distance of 2, 848 Å is by far the shortest dimeric manganese (I) complex of this type.

Keywords, manganese complexes Schiff base IR spectra crystal structure magnetic moment