维普资讯 http://www.cqvip.com 406 Vol. 15, No. 5 第5期 无机化学学报 1999年9月 CHINESE JOURNAL OF INORGANIC CHEMISTRY Sept 1999 三(2-苯并咪唑亚甲基)胺铜(『)配合物的 0614.12/ 合成、晶体结构和量子化学研究 樊 志** 文 欣 周卫红 刘小兰* 缪方明 R554.03 (天津师范大学晶体化学研究所,天津 300074)

合成了高氯酸[三(2-苯并咪唑亚甲基)胺]咪唑合铜(I)配合物[Cu(C₃₇H₂₅N₉)](CO₄)₂・ 2CH₃OH·H₄O。用 X-射线衍射的方法测定了其晶体结构,并对其混合配体进行了量化计算。配合物 晶体结构属三斜晶系,空间群为 P 1,晶胞参数;a=11.377(4), b=12.380(2), c=15.068(5) Å, a= 66.16(2)°, $\beta=72.41(3)$ °, $\gamma=74.00(2)$ °, V=1821.5 Å3, Z=2, P(000)=726, Dc=1.491 g/ cm³, $Mr=818.09, \mu(MoKa)=8.133$ cm⁻¹。结构由重原子法和傅里叶合成法解出,利用全矩阵最小 二乘法进行修正,最终偏离因子 R=0.07, Rw=0.09。Cu²⁺与混合配体的五个 N 原子配位形成扭曲 的三角双锥构型。量子化学计算表明 Cu²⁺处于由五个 N 原子包围的大小适宜的负电荷的空穴内。

超氧化物歧化酶(SOD)是一类存在于生物体内的金属酶,由于它能清除生物体内的超氧 阴离子自由基,因此在防御氧的毒性、抗辐射损伤、预防衰老以及防治肿瘤、炎症的发生等方面 起重要作用。经过长期的科学研究和探索,科学家完成了全部氨基酸顺序的测定工作^[1]。SOD 的活性中心主要是过渡金属离子配合物,其中金属离子与组氨酸及其残基上的氮配位^[2~4]。为 了模拟 SOD 活性中心的结构,我们以三(2-苯并咪唑亚甲基)胺为配体合成系列过渡金属配合 物,研究它们的结构与活性的关系。作为研究的一部分本文报道高氯酸[三(2-苯并咪唑亚甲 基)胺]咪唑合铜(I)配合物合成、晶体结构和量化计算的结果。

1 **实验部分**

1.1 配合物的合成

按文献方法^[5]合成配体三(2-苯并咪唑亚 甲基)胺简称 NTB,化学结构式见图 1。将 2 mmol 的 Cu(ClO₄)₂ 溶于乙醇中,不断搅拌下加 图 1 三(2-苯并咪唑亚甲基)胺 Fig. 1 N, N-bis(1H-benzimidazole-2-ylmethyl)-1Hbenzimzidazole-2-methanamine

入 2 mmol 配体 NTB 的乙醇溶液,室温下反应 1 h,然后加入 2 mmol 咪唑,在 50 C反应 1 h,浓

- * 通讯联系人。
- * ≁ 现在天津农学院。

收稿日期:1998-10-20。 收修改稿日期:1998-12-21, 天津市教委贤助重点学科项目。

第一作者:"美志。男,27岁。讲师,硕士」研究方向:物理化学。

缩得绿色粉末。

1.2 单晶培养和结构解析

将上述产物溶于甲醇中,室温下缓慢蒸发,得到绿色长方形的透明晶体。取一大小为 0.2 、0.2、0.25 mm 的单晶置于 Enraf-Nonius CAD4 衍射仪上,用经石墨单色器单色化的 MoAu 射线,以ω/2θ 扫描方式,在室温下由 25 个高角度衍射点,经最小二乘方法确定了晶胞参数。在 2θ≤50°范围内共收集 1846 个独立衍射点,其中 />3σ(1)共 1278 个用于结构的解析和修正。 所有衍射点均经 LP 因子校正。

分子结构由 Patterson-Fourier 合成法解出,结构经全矩阵最小二乘法修正,单位权重方式, 非氢原子采用各向异性热参数,氢原子未参与修正,最终偏离因子 R=0.07, Rw=0.09,(J/σ)_{wa}=0.49, S=1.21,在最后一轮差值电子密度图上的最高峰和最低峰分别为 0.591e/Å³和 -0.393 e/Å³。全部计算是在 VAX3100 计算机上使用 MOLEN 程序完成的。原子散射因子取 自国际晶体学表 N (1974)。

表1为非氢原子分数坐标和等价各向同性热参数,表2为部分键长值,表3为部分键角值,图2为配位正离子的结构透视图,图3为晶体结构堆积和氢键图。

表 1 非氢原子坐标及各向异性热参数

Table 1 Atomic Coordinates and Equivalent Isotropic Thermal Parameters

atom	z	Ţ	2	Ben	atom	z	y .	z	Beq
Cul	0.2286(2)	0.0596(2)	0.01716(2)	3.58(3)	C14	0.476(2)	0.010(1)	0.319(1)	5.4(4)
C11	0.1494(7)	0.5729(4)	0.2240(5)	7.6(2)	C15	0.557(3)	0.006(2)	0.374(2)	7.4(7)
C12	0,2952(7)	0.5253(5)	0.8293(7)	8.6(2)	C16	0.557(3)	0.114(2)	0.373(2)	5.6(6)
01	0.097(3)	0.689(2)	0.231(2)	11.1(8)	C17	0.528(3)	0.215(2)	0.313(2)	6.9(6)
02	0.109(3)	0.575(2)	0.143(2)	11.7(6)	C21	0.094(2)	0.177(1)	0.014(1)	3.9(6)
03	0.288(2)	0.557(2)	0.194(3)	12.8(8)	C22	0.125(2)	0.074(2)	-0.082(1)	7.6(4)
04	0.121(5)	0.470(3)	0.294(3)	15(1)	C23	0.194(1)	0.019(1)	0. 0184(9)	6.7(3)
05	0.354(4)	0.511(2)	0.734(2)	12(1)	C24	0.265(2)	-0.103(1)	~0.011(1)	5.8(4)
06	0.213(4)	0.442(4)	D. 853(3)	14(1)	C25	0.259(2)	-0.133(2)	-0.093(2)	7.4(6)
07	0.243(2)	0.642(2)	0.811(3)	10.8(9)	C26	0.190(3)	-0.058(2)	0.168(2)	9.0(7)
08	0.385(3)	0.484(4)	0.874(5)	15(1)	C27	0.120(2)	0.051(2)	~0.169(1)	4.3(4)
N1	0.116(2)	0.243(1)	0.140(1)	4.0(4)	C31	0.005(2)	0.138(1)	0.301(1)	4.0(4)
N 11	0.339(2)	0.137(1)	0.2040(9)	5.0(3)	C32	-0.093(2)	0.000(1)	D. 430(1)	4.2(4)
N12	0.382(2)	0.308(1)	0.192(1)	4.2(4)	C33	0.007(2)	-0.057(1)	0.375(1)	4,3(4)
N2J	0.174(1)	0.0748(9)	0,056(1)	6.2(3)	C34	0.029(2)	-0.180(2)	0.404(1)	4.4(4)
N22	0.063(2)	0.186(1) -	0.065(1)	5.8(4)	C35	-0.048(3)	-0.246(3)	0.489(2)	6.9(6)
N31	0.072(2)	0.026(1)	0.298(1)	5.5(3)	C36	-0.154(2)	-0.184(2)	0.541(2)	7.1(6)
N32 -	-0.094(1)	0.118(1)	0.3865(9)	4,2(3)	C37	-0.177(2)	-0.060(2)	0.514(1)	4.2(4)
N41	0.352(1)	0.0911(9)	0.184(1)	4, 3(3)	C41	0.334(3)	-0.198(2)	0.216(3)	8.5(9)
N42	0.451(2)	-0.266(1)	0.198(3)	10.8:9)	C42	0.540(3)	-0.204(2)	0.151(2)	8,6(7)
C1	0.226(1)	0.312(1)	0.103(2)	5.7(4)	C43	0.478(2)	-0.082(2)	0.129(2)	5.3(5)
C2	0.042(2)	0.266(1)	0.074(1)	5,2(4)	00100	0.616(3)	-0.387(2)	0.422(2)	11.9(7)
C3	0.048(2)	0.248 (1)	0.238(1)	5 5(4)	0200	0.701(4)	-0.448(2)	0.517(2)	15,6(9)
C11	0.314(1)	0.261(1)	0.157(1)	4.7(4)	0300	-0.282(2)	0.291(1)	0. 443(2)	8.6(5)
C12	0.445(1)	0.224(1)	0.252(1)	4.2(4)	C100	0.51(1)	-0.285(7)	0.431(3)	16(3)
C13	0.423(1)	0.1116(9)	0.261(1)	3.4(3)	C200	0.69(1)	-0.575(6)	0.560(4)	19(3)

第5期	梑	志等,三(2-苯并咪唑亚甲基)胺锔(1)配合物的合成,晶体结构和量子化学研究。	• 603 •

表 2 部分键长 Table 2 Selected Bond Lengths <u>A</u>									
Cul-N11	2.03(3)	N31-C31	l. 40(4)	N11-C13	1.36(5)	C1-C11	1.34(6)		
Cu1-N21	1.95(4)	N31-C33	1.38(4)	N12-C11	1 40(4)	C1-C21	1.59(4)		
Cul-N31	2.17(2)	N32-C31	1.41(4)	N12-C12	1.28(4)	C1-C31	1.4315>		
Cu1-N41	1.98(2)	N32-C32	1-34(4)	N21-C21	1.38(5)	0100-0200	1.76(9)		
N1-C1	1.55(4)	N41-C41	1.26(5)	N21-C23	1.47(4)	O100-C100	1.5(1)		
NJ-C2	1.38(5)	N41-C43	1.42(5)	N22-C21	1.29(5)	O200-C200	1 5(1)		
NJ-C3	1 46(4)	N42-C41	1.38(6)						

表 3 部分键角

-

٠

.

Table 3 Selected Bond Angle							
N1-Cu1-N11	82. (1)	NI-C3-C31	111. (2)	C1-N1-C2	118. (3)	N21-C23-C22	114. (4)
NJ-Cu1-N21	80.(1)	N11-C11-N12	106. (3)	C1-N1-C3	108.(3)	N2J-C23-C24	125. (5)
N1-Cu1-N31	80. (1)	N11-C11-C1	121. (3)	C2-N1-C3	115. (3)	N31-C31-N32	108.(3)
N1-Cu]-N41	171. (1)	N12-C11-CJ	133. (2)	С11-м11-С13	108. (2)	N31-C31-C3	123. (3) 🔒
N11-Cu1-N21	138. (1)	N12-C12-C13	109.(3)	C11-N11-C12	111. (3)	N32-C31-C3	129. (2)
N11-Cu1-N31	106.(1)	N12-C12-CJ7	137.(3)	C21-N21-C23	97. (4)	N32-C32-C33	108.(3)
N11-Cu1-N41	93.(1)	N11-C13-C12	107.(3)	C21-N22-C22	105. (4)	N32-C32-C37	128. (2)
N21-Cu1-N31	108. (1)	NII-C13-C14	132.(2)	C31-N31-C33	106. (2)	N31-C33-C32	110. (3)
N21-CuJ-N41	99.(1)	N21-C21-N22	118.(2)	C31-N32-C32	109. (2)	N31-C33-C34	131. (2)
N31-Cu1-N41	109. (1)	N21-C21-C2	114. (3)	C41-N41-C43	111, (3)	N41-C41-N42	106. (4)
Cul-N1-Cl	97.(2)	N22-C21-C2	128. (3)	C41-N42-C42	114. (4)	N42-C42-C43	104.(4)
Cu1~N1-C2	112. (2)	N22-C22-C23	106. (3)	N1-C1-C11	114. (3)	N41-C43-C42	104. (3)
Cul-N1-C3	105. (2)	N22-C22-C27	123.(5)	N1-C2-C21	111. (3)		

图 2 配位正底子 Cu(NTB)[imh]²⁺的结构透视图 Fig. 2 Perspective drawing of the coordinated cation Cu(NTB)[imh]²⁺

•

图 3 Cu(NTB)(imH)(ClO₄)₂ · 2CH₅OH · H₂O 的晶体结构堆积和氢键图 Fig. 3 Molecular packing and intermolecular hydrogen bonds of the crystal structure of Cu(NTB) (imH)(ClO₄) · 2CH₃OH · H₂O

2 结果与讨论

2.1 晶体结构

结构分析表明,晶胞中含有 2 个化学式量 的分子 [Cu (C₂₇ H₂₅ N₉)] (ClO₄)₂ · 2CH₃OH · H₂O,每个分子由一个配位正离子 [Cu (C₂₇ H₂₃ N₉)]²⁺(1)、2 个 ClO₄⁻、1 个结晶水和 2 个甲醇 分子组成。在正离子部分,Cu²⁺和混合配体 (NTB 和咪唑)配位、即与 NTB 的 N11,N21, N31 和顶端 N1 配位,还与咪唑的 N41 配位,形 成五配位的结构。

赤道平面由 N11, N21, N31 组成, Cu²⁺ 距 赤道平面 0、329 Å, 朝向自由咪唑 N41 的方

(1)

向,轴向键长 Cu-N41 1.98 Å; Cu-N1 2.21 Å也可看出这一趋向。赤道平面的键长; Cu1-N11 2. 03 Å; Cu1-N21 1.95 Å; Cu1-N31 2.17 Å。赤道平面的键角; N11-Cu1-N21 138°; N11-Cu1-N31 106°; N21-Cu1-N31 108°。 Cu1 和 N1 与赤道面 N 原子间的键角为 80~82°, Cu1 和 N41 与 赤道面 N 原子间的键角为 93~109°。由以上数据可看出配位多面体为变形三角双锥构型,这 种配位构型与已报道的相同配体(NTB)配合物^[6]的配位构型类似, Cu²⁺与赤道面 N 原子的键 长和键角分别为 2.03, 1.95, 2.17 Å; 82, ,80, 、80, °(文献值; 2.04, 1.94, 2.10 Å; 84, , 81., 79.0°), Cu²⁺ 与轴向 N 原子的键长和键角分别为 2.21, 1.98 Å; 171.°(文献值:2.11 和 1.92 Å; 170.2°)。我们应用 Muetterties 和 Guggenberger^[7]所述方法计算扭曲角,得到 J 值。理 想三角双锥(TBP)nJ=0,理想四方锥(TP)nJ=1。而我们的结构 J=0.12,说明该结构处于 TBP 和 TP 间的过渡构型,更偏向于 TBP。

结构中存在三个五元螯合环,均为信封式构象,N1距信封平面1(Cu1/N11/C11/C1)0.761 Å,距信封平面2(Cu1/N21/C21/C2)0.282 Å,距信封平面3(Cu1/N31/C31/C3)0.623 Å。三 个苯并咪唑平面的夹角分别为142.02°,92.34°和109.40°。而配体NTB^[*]中三个苯并咪唑平

面的夹角分别为:91.44°、133.46°和122.3°。 看来在 Cu 的配合物中的配体较自由配体结 构发生了较大变形,这是由于螯合环牵制和 咪唑分子的嵌入,使 NTB 为了满足配位的需 要,必须调整其构象,使空间位阻最小,因而 发生了扭曲。

结构分析表明,两个甲醇溶剂分子通过 氢键作用而发生聚合,使得两羟基氧原子的 距离仅为 1.76 Å。晶体中存在着分子间氢 键,晶体结构依靠库仑力的氢键作用而稳定。 氢键列于表 4,并见图 3 所示。

表 4氢键							
Table 4 H	ydrogen	Bond	Å				
Hydrogen blond							
01110200		1.76					
O300N32		2. 78					
O3…N12		2.981					
N421		3.211					
O1001O54		3.185					
O5*O3002		2.953					
symmetrical code :	i: I	1 + y	z				
	$j_{2} 1 + z$	¥.	2				
	k; 1-z	1 — y	1—				

2.2 量化计算

在 SGI Indigo II 工作站的 Sybyl 6.3 界面上,应用 MOPAC 软件包中 AM3 程序,对配位正 离子中的混合配体进行了量化计算。原子净电荷计算表明,由 N1,N11,N21,N31 和 N41 形成 了一个负电荷的空穴,原子净电荷和空穴大小列于表 5。Cu²⁺的半径为 0.72 Å,表 5 列出了空 穴的大小,在配位时铜离子高出赤道面 0.3285 Å,恰好满足 Cu²⁺的配位环境,Cu-N 配位键长 为 1.95~2.21 Å,形成了变形三角双锥的配位构型,这是 NTB 配体特有的配位构型,完全符 合分子预组装的原则。

Table 5 Net Atomic Charge and Distance between Atoms in the Negative Charge Hole								
negative charge hole	atom	net charge	atom atom	dist. / Å	atom····atom	dist. / Å		
×	NJ	-0. 2263	NI…N]]	2. 776	N41N31	3. 370		
	N11	-0.0042	N1N2]	2.680	N1N41	4.173		
N31 N1	l N21	- 0. 0351	N 1N31	2. 818	N11N21	3. 716		
	N31	— O. 0177	N41…N11	2.919	N11N31	3.354		
N	N41	-0.0729	N41N21	2. 984	N21N31	3. 325		

表 5 原子净电荷和空穴大小

-- - -

第15卷

参考文献

- [1] LI Yi-Xin(李益新) Shengoou Hunzue Yu Shengoou Wule Junzham (Progress in Buchemestry and Buchhysics), 1985, 2, 15.
- [2] Richardxon J. S., Thoms K. A., Rubin B. H., Chardxon D. C. Proc. Natl. Acad. Sci. U. S. A., 1975, 72, 1349.
- [3] Valentine J. S., de Freltas D. M. J. Chem. Blue., 1985, 62, 990.
- [4] Weser U., Schubbetz L. M. Lengfelder E. J. Mol. Catal., 1981, 13, 249.
- [5] Marabella C. P., Enemark J. H., Newton W. E., Ncdolnald J. W. Inorg. Chem., 1982, 21(2), 632.
- [6] ZHOU Wei-Hong(周卫红)、LlU Xiao-Lan(刘小兰), MIAO Fang-Ming(缪方明), WANG Hong-Gen(王宏根), YAO Xin-Kan(姚心侃) Juggen Humane (Chanese J. Struct. Chem.), 1996, 15(4), 288.
- [7] Muetterties E. L. , Guggenberger L. J. J. Am. Chem. Soc. , 1974, 96, 1748.
- [8] ZHOU Wei-Hong(周卫红), MIAO Zhi-Wei(苗志伟), LIU Xiao-Lan(刘小兰), MIAO Fang-Ming(缪方明), WANG Hong-Gen(王宏根), YAO Xin-Kan(姚心侃) Juegou Huuzue (Chanese J. Struct. Chem.), 1999,18(3), 204.

STUDY ON SYNTHESIS, CRYSTAL STRUCTURE AND QUANTUM CHEMISTRY OF THE COMPLEX OF TRIS(2-BENZIMIDAZYLMETHYL) AMINE WITH COPPER (I)

FAN Zhi WEN Xin ZHOU Wei-Hong LIU Xiao-Lan MIAO Fang-Ming (Institute of Chemical Crystallography, Tumpor Normal University, Tumping 300074)

[N, N-bis(1H-benzimidazole-2-ylmethyl)-1H-benzimidazole-2-methanamine] [Imidazole]copper(I) per(I) perchlorate has been synthesized and structurally determined by X-ray diffraction method. A quantum chemistry calculation was done to the mixed legands. Crystal data: triclinic, space group PI, a=11.377(4), b=12.380(2), c=15.068(5) Å, $a=66.16(2)^{\circ}$, $\beta=72.41(3)^{\circ}$, $\gamma=74.00$ (2)°, V=1821.5 Å³, Z=2, F(000)=726, Dc=1.491 g/cm³, Mr=818.09, $\mu=8.133$ cm⁻¹. The structure was soluted by heavy-atom and Fourier synthesis methods and refined by full-matrix least-squares method. The final R=0.07, Rw=0.09. Five nitrogen atoms coordinate to the copper (I) to form a distorted triganal-bipyramid. The quantum chemistry calculation indicated that Cu (I) sits in the middle of the negative charge hole formed by five nitrogen atoms.

Keywords: crystal structure N, N- bis (1H- benzimidazole- 2- ylmethyl)- 1H- benzimidazole- 2methanamine complex of copper(I)