

Vol. 15, No. 5 Sep. 1999

C614.33

[Ln(DMSO)₇Cl][BPh₄]_{2 (Ln=La, Nd, Sm, Eu, Gd, Tb, Dy, Tm) 的合成、性质及[Eu(DMSO)₇Cl][BPh₄]₂ 的晶体结构 张 道ⁿ 郭松山⁴ 王汉章ⁿ <u></u>*郭*开北^b}

(*苏州大学化学系,苏州 215006)

(*中国科学院成都分析测试中心,成都 610064)

以二甲亚砜(DMSO)作配体与三价希土离子配位,选用四苯硼酸根 BPh₄⁻作为大阴离子、台成 了一系列希土配台物[Ln(DMSO)₇Cl][BPh₄]₂(Ln=La、Nd、Sm、Eu、Gd、Tb、Dy、Tm),并用元素分 析,红外光谱对其进行表征,采用单晶 X-射线四圆衍射测定了[Eu(DMSO)₇Cl][BPh₄]₂ 的晶体结构。 铕配合物属三斜晶系,空间群为 P_1 ,晶胞参数 Eu₂ a=12.539(2), b=12.755(2), c=24.583(3) Å; a=93.406(8), β =104.630(8)、y=112.873(12)°, V=3455.4(8) Å⁵, Z=2, Mr=1372.73, Dc= 1.319 g·cm⁻³, μ =1.204 mm⁻¹, F(000)=1424, R=0.0349, Rw=0.0818。配位大阳离子[Eu(DM-SO)₇Cl]²⁺中希土 Eu(I)的配位数是 8,来自七个亚砜配体的亚磺酰基氧原子和一个氯离子与希土 配位,形成一畸变的四方反棱柱大阳离子配位多面体,而四苯硼酸根仅作为平衡电荷的大阴离子, 不参与成键。

亚砜类对希土元素有较强的配位能力,有关亚砜希土配合物已有不少报道。然而,由于亚 砜希土配合物的晶体培养特别困难,目前见于文献的该类配合物所含的阴离子几乎全部为半 径小、配位能力强的 NO₃⁻,RCOO⁻等离子^[1~7]。为了探索亚砜希土配合物的合成,单晶的培养 和生长大尺寸晶体的方法,我们曾先后尝试低温结晶、更换阴离子以及添加小分子等手段来改 善结晶条件,但均未获成功。鉴于许多的配合物离子在溶液中稳定存在,而要离析出来则会分 解,大的配合物离子可以用大小相当的抗衡离子来平衡,以盐的形式析出。大阴离子和大阳离 子的匹配有利于晶态的稳定。

我们应用这一原理,采取回流加热、溶剂挥发析出晶体的方法,合成了新型大阴离子大阳 离子希土配合物[Ln(DMSO₇Cl][BPh4]₂(Ln=La、Nd、Sm、Eu、Gd、Tb、Dy、Tm),并成功地培 养了配合物的大尺寸晶体。我们近来还发现该类配合物性质稳定,有的具有非线性光学性质。 因此,该类希土亚砜配合物的合成、结构和性质的研究,对于希土元素的配位化学、结构化学以 及晶体功能材料化学都有一定的意义。

收稿日期:1998-11-03。 收修改稿日期:1999 03-26.

^{*} 通讯联系人。

第一作者:张 道,男、28岁,助研,现在南京师范大学化学系工作;研究方向:希土配合物。

第 15 卷

1 实验部分

1.1 仪器和测试条件

碳氢含量用意大利 MOD-1106 型元素分析仪测试。美国 Mattson Co. Alpha Centauri 型 Fourier 变换红外光谱仪,KBr 压片,在 4000~400 cm⁻¹内摄谱;Siemens P4 型四圆 X 射线衍射 仪。

1.2 **配合物的合成**

将1 mmol 希土氧化物(Ln₂O₃, 99.99%)用浓盐酸溶解,蒸发浓缩制成水合氯化希土盐,溶 于丙酮中,按摩尔比 Ln: DMSO: NaBPh,=1:7:2 计量加入亚砜配体和四苯硼钠,搅拌回 流、过滤、静置数天后有配合物晶体析出。

1.3 晶体结构的测定

取一尺寸为 0.60× 0.46× 0.37 mm 的晶体进行衍射数据收集。在 291K 时,用经石墨单色 器单色化的 MoKa 辐射(λ =0.71073 nm),在 1.95 < θ < 24.00°范围内,以 ω -2 θ 扫描方式,用 XS-CAN 程序共收集 11416 个独立衍射点,其中 $I > 2\sigma(I)$ 的 10811 个独立衍射点用于结构分析, 晶体结构采用 SHELXTL 5.03 程序解出,由 Parterson 函数定出 Eu 的坐标,再经差值 Fourier 合 成得到全部非氢原子坐标。除了 C3, C4, C7, C7', C8, C8', C9, C9', C10, C10', C11, C11', C12, C12', C13, C13', C14, C14'的氢原子是理论加氢外,其余氢原子增多由差值傅立叶合成 得到。由差值 Fourier 合成得到的氢原子和各向同性热参数参加到全矩阵最小二乘法修正,最 后得 R=0.035, Rw=0.082。

2 结果与讨论

2.1 **配合物的组成**

元素分析数据见表 1,结果表明,配合物中 Ln(II)与亚砜配体、氯离子、四苯硼酸根的比例 为 1:7:1:2,这与晶体结构测试结果一致。

complex	¢/%	H/%
[Ln(DMSO)7Cl][BPh1]2	found (catc.)	found (calc.)
La	54. 74: 54. 77)	6.07(6.08)
Nd	54. 54(54. 55)	8,05(6,05)
Sm	54.30(54.31)	6.02(6.03)
Eu	54.08(54 25)	5,99(6,02)
Gd	54.04(54.04)	5,99(6.00)
Tb	53.99(53.97)	6,00(6,00)
Dy	53.83(53.83)	5.96(5.97)
Tm	53.77(53.59)	5.90(5.95)

表 1 配合物的元素分析数据 Table 1 Elemental Analysis Data of Complexes [Ln(DMSO)₇Cl][BPh₄],

2.2 配合物的 IR 光谱

配合物的红外光谱数据见表 2。IR 结果表明,游离亚砜 DMSO 中的硫氧键特征峰位于

第5期

1038 cm⁻¹,而在配合物中位移至1011 cm⁻¹附近,证明是氧作为配位原子与希土配位^[1~6]。ν₁₀₋₀ 由 408.9 增至 416.7,归因于随着原子序数的增加,亚砜与希土结合能力增强,Ln-O 键长变短 (参见晶体结构部分)。配合物中 BPh₄⁻特征吸收峰与四苯**硼酸钠基本相同**,显示四苯硼酸根大 阴离子仅作为外界电荷平衡离子。这些结果与我们测得的配合物的晶体结构相吻合。

表 2 配合物的红外光谱

Table 2 IR Spectra of Complexes

	ligand DMSO	anion			[Ln(DMSO)7][BPh4]2					
		BPh ₄ ~	La	Nd	Sm	Eu	Gd	ть	Dy	Tm
ν(== C-H)		3059	3056	3056	3056	3056	3056	3056	3056	3056
$\nu \langle = C - H \rangle$		3036	3036	3036	3036	3036	3036	3036	3036	3036
$v_{\rm ex}(\rm CH_3)$	3002	2990	3002	3002	3002	3005	3005	3005	3005	3005
ν _s (CH ₃)	2917		2913	2913	2913	2916	2916	2917	2913	2913
∂_(= C-H)		1640	1636	1636	1639	1636	1636	1640	1636	1644
%(C≕C)		1578	1578	1578	1578	1578	1578	1578	1578	1578
$\delta_{as}(CH_3)$	1478		1478	1478	1478	1478	1478	1478	1478	1478
$\delta_{0}(CH_{3})$	1413		1427	1427	1427	1427	1427	1427	1427	1427
δ₁(CH ₈)	1312		1316	1 3 16	1316	1316	1316	1316	1 3 16	1316
μ(S-O)	1038.4		1010.8	1010.8	1010.8	1010.8	1010.8	1010.8	1010.8	1010.8
$\delta_{\rm P}({\rm CH}_3)$	954. 3		961	9 61	9 61	961	961	961	9 61	961
δ₄(==C-H)		744.6	736.9	736.9	744.6	744.6	744.6	744.6	744.6	744.6
₽ (C-S)	703.8	713.7	709.9	709.9	709. 9	713.7	713.7	709.9	709.9	713.7
ν. (C-S)		605.7	613.4	613.4	613.4	613,4	613.4	613.4	613.4	609.6
ν.(Ln-O)			408. 9	408.9	412.8	412, 8	412.8	416.6	416.7	416 <u>.</u> 7

表 3 非氢原子坐标和热参数

Table 3 Non-Hydrogen Atomic Coordinates (×104) and their Thermal Parameters

	ĩ	y	2	 {(eq)	ĩ	y _	¢	U(eq)	
Eu	5226(1)	7356(1)	7274(1)	35(1)	\$(6)	8389(1)	8577(1)	7538(1)	62(1)
Cl	3623(1)	8347(1)	6807(1)	64(1)	C(11)	8889(16)	9141(9)	8281(2)	80(6)
S(1)	3494(1)	6154(1)	5810(1)	55(1)	C(12)	9468(14)	8032(15)	7478(9)	67(6)
S(2)	5743(2)	6494(1)	8644(1)	108(1)	S(7)	6342(4)	10222(3)	8212(2)	64(1)
S(3)	6270(1)	9490(1)	6424(1)	48(1)	C(13)	5617(13)	11018(10)	7826(8)	52(5)
0(1)	3988(3)	6014(2)	6419(1)	53(1)	C(14)	5140(9)	9519(8)	8504(5)	90(4)
0(2)	5987(3)	7462(2)	8308(1)	64(1)	S(4')	2524(7)	6476(11)	7833(4)	99(5)
0(3)	5995(3)	8279(2)	6544(1)	49 (1)	C(7')	1271(30)	6208(35)	7223(13)	148(30)
0(4)	3574(2)	6506(3)	7642(2)	78(1)	C(8')	2253(35)	5212(29)	8146(21)	247(52)
0(5)	5219(3)	5518(2)	7411(1)	63(1)	S(5')	4344(4)	4333(3)	7419(2)	61(2)
0(6)	7212(2)	7543(2)	7432(1)	64(1)	C(9')	3536(23)	3560(27)	6710(6)	55(7)
0(7)	6295(2)	9 321(2)	7756(1)	51(1)	C(10')	5267(42)	3555(42)	7535(18)	81(24)
S(4)	2232(1)	5871(2)	7412(1)	76(1)	S(6')	8416(3)	7831(3)	7851(2)	50(1)
C(7)	1541(10)	6807(8)	7520(5)	120(4)	C(11')	9021(43)	9248(13)	8252(14)	95(19)
C(8)	1781(8)	4962(7)	7906(4)	105(3)	C(12')	9621(33)	8282(38)	7538(21)	58(11)
S(5)	4867(1)	4386(1)	7055(1)	50(1)	S(7°)	5697(4)	9767(4)	8114(2)	65(1)
C(9)	3269(4)	3627(13)	6897(5)	93(4)	C(13')	5843(21)	11094(12)	7884(12)	105(8)
C(10)	5246(14)	3528(14)	7550(6)	83(8)	C(14')	6917(10)	10459(10)	8756(4)	113(6)

• Equavalent isotropic U defined as one thrid of the trace of the orthogonalized U_{23} tensor.

2.3 非线性光学效应

初步定性测试了系列希土亚砜配合物[Ln(DMSO)₇CI][BPh₄]₂ 的三阶非线形性质,发现 Sm 的配合物可观察到三阶非线形效应,而其它希土配合物非线性光学效应不明显。鉴于该类 配合物的晶体易培养,而且尺寸较大等特点,故而我们认为有潜在的应用前景,进一步的测试 和理论上的深入研究正在进行中。

2.4 晶体结构

配合物[Eu(DMSO)₂Cl][BPh₄]₂的晶体属三斜晶系,空间群为 P_1 ,晶胞参数:a=12.539(2),b=12.775(2),c=24.583(3)Å; $a=93.406(8)^\circ$, $\beta=104.630(8)$, $\gamma=112.873(12)$, =3455.4(8)Å³, Z=2, F(000)=1424,

铕配合物的非氢原子坐标和等效热参数列于表 3,主要键长和键角列于表 4 和表 5。

Table 4 Selected Bond Lengths (Å) of Eu Complex						
atom	atom.	distance	atom	atom	distance	
Eu	0(1)	2.370(3)	Eu	0(2)	2. 455(3)	
Eu	0(3)	2.405(3)	Eu	0(4)	2.367(3)	
Eu	O(5)	2.388(2)	Eu	O(6)	2.334(2)	
En	0(7)	2, 394(2)	Eu	Ci	2.8187(12)	

表4 主要的键长

alom	atom	ងលោ	angle	atom	atom	atom	angle
0(1)	 Eu	0(2)	141.59(9)	0(1)	Eu	0(3)	76.00(10)
0(1)	Eu	0(4)	86.39(12)	0(1)	Eu	O(5)	71.71(9)
O (1)	Eu	O(6)	108.39(10)	0(1)	Eυ	O (7)	148.80(10)
0(1)	Eu	CI	78.65(8)	O(2)	Eu	O(3)	137.06(10)
O(2)	Eu	0(4)	70.30(11)	O(2)	Eu	0(5)	73. 41(9)
O(2)	Eu	O(6)	75.43(11)	0(2)	Eu	O (7)	69.14(9)
O(2)	Eu	CI	121.78(8)	0(3)	Eu	0(4)	149. 10(11)
0(3)	Eu	O(5)	119.80(10)	0(3)	Eu	O(6)	71.39(10)
0(3)	Eu	0(7)	79.22(9)	0(3)	Eu	CI	75.94(7)
0(4)	Eu	O(5)	76.68(12)	O(4)	Eu	0(6)	[39.13(11)
0(4)	Eu	0(7)	106.29(11)	0(4)	Eu	CI	75.81(8)
0(5)	Eu	O(6)	72.69(10)	O(5)	Eu	0(7)	138.37(10)
0(5)	Eu	Ci	140.41(8)	O(6)	Eu	0(7)	80.81(10)
0(6)	Eu	CI	143.36(8)				

表 5 主要的键角 Table 5 Selected Bond Angle (°) of Eu Complex

图 1 是 Eu 配合物的分子结构图,从配合物的分子结构图可以看出,一个晶胞中含有两个式量分子,每个分子中都含有一个大的配阳离子[Eu(DMSO),Cl]²⁺和两个大的平衡阴离子 BPh,⁻,大阴离子和大阳离子半径大小的匹配,彼此通过库仑力作用,可能是形成晶体的重要因 素。在配位大阳离子中,Eu的配位数为8,来自七个亚砜配体的亚磺酰基氧原子和一个氯离子与希土配位,形成一畸变的四方反棱柱大阳离子配位多面体,同时由于部分相邻配体亚砜的空间较为疏松,导致该结构中S₁,S₂、S₆、S₇及相应的C₇、C₈、C₉、C₁₀、C₁₁、C₁₂、C₁₃、C₁₄会发生翻转、振动,即对应有S₄'、S₅'、S₆'、S₇'及相应的C₇'、C₈'、C₉'、C₁₀'、C₁₁'、C₁₂'、C₁₄',这些基团在这两种位置上的统计分布占有率分别是、0.80:0.20;0.73:0.27;0.72:0.28和0.61:0.39。四苯硼酸根仅作为平衡电核的大阴离子,不参与配位成键。

图 1 销(1)配合物的分子结构 Fig. 1 Molecular structure of the Eu(1) complex

八配位的排列最可能的形式是四方反棱 柱和三角十二面体。这两种多面体的关系十分 密切,因为只需要很小的空间重排就可以转 变。Hoard 和 Silverton^[7]提出了用多面体内接梯 形的两面角判断两者的区别。在理想的十二面 体中有两个相互垂直的内接梯形;在理想的四 方反棱柱中应有两个内接梯形,其交角为77. 4°。配位阳离子[Eu(DMSO);CI]³⁺中有共面的 两内接梯形平面 I (01,04,02,06)和平面 I (02,05,03,07),经计算得知,两者的二 面角 76.87°与77.4°相差无几。因此,这八个配 位的原子在中心离子周围形成了如图 2 所示 的畸变四方反棱柱多面体。原子01、03、05、 06 和 02、04、07、CI 两组配位原子共面性很

图 2 配位阳离子[Eu(DMSO)₇Cl]²⁺多面体的立体结构

Fig. 2 Coordination polyhedron of the Eu in the complex

好。这两个平面的夹角为 3.47°、近似平行,构成了四方反棱柱的上下平面。从以上讨论可以看出,大阳离子[Ln(DMSO),Cl]²一配位多面体是一畸变的四方反棱柱多面体。

第15卷

参考文献

- Edward R. Birnbaum, et al Gemelan Hankbook of Inorganic Chemistry, D4, Sc., Y., La to Lu.; Coordination Compounds 4. Springer-Verlag Berlin. Heidelberg; New York. Tokyo, 1988, 25.
- [2] Kauwano Yoshi, Osorio Voktoria K. L. J. Inorg. Nucl Chem., 1977, 39(4), 701.
- [3] Bhandary K. Krisha, Manotar H., Venkatesan K. J. Inorg. Nucl. Chem., 1975, 37(9), 1997.
- [4] Zhang Ruohua, Ma Baoqing Polyhedron, 1997, 18(7), 1123.
- [5] XIE Gao-Yang(谢高阳), ZHANG Zhen(张 真), WANG Bao-Yi(王宝义) et al Gaodeng Xuernas Humme Xuebas (Chem. J. Chanese [in.), 1988, 9(3), 207.

[6] Kawashita KuYa M., Serra O.A., Lakates Osario V.K. J. Inorg. Nucl. Chem., 1975, 37, 1998.

[7] Hoard J. L., Silverton J. V. Inurg. Chem., 1968, 7(8), 1686.

SYNTHESIS, PROPERTIES OF SOME LANTHANIDE(II) COMPLEXES [Ln(DMSO)₇Cl][BPh₄]₂ AND CRYSTAL STRUCTURE OF [Eu(DMSO)₇Cl][BPh₄]

ZHANG Dao' GUO Shong-Shan' WANG Han-Zhang' YU Kai-Bei'

("Department of Chemistry, Suchon University, Suchon 215006)

(*Chengdu Center of Analysis and Measurement, Acedemia Sanca, Chengdu 610041)

A series of complexes of $LnCl_3 \cdot nH_2O$ with dimethylsulfoxide and sodium tetraphenylboron with general formula $[Ln(DMSO)_7Cl][BPh_4]_2(Ln=La, Nd, Sm, Eu, Gd, Tb, Dy, Tm)$ have been prepared and characterized by means of elemental analysis. IR spectra. The crystal and molecular structure of $[Eu(DMSO)_7Cl][BPh_1]_2$ has been determined by single-crystal X-ray diffraction. The complexes of Eu crystallize in the triclinic system, space group $P\bar{1}$. a=12.539(2), b=12.755(2), c=24.583(3)Å; a=93.406(8), $\beta=104.630(8)$, $\gamma=112.873(12)^\circ$, $V=3455.4(8)Å^3$, Z=2, Mr = 1372.73, Dc = 1.319 g \cdot cm⁻³, $\mu = 1.204$ mm⁻¹, F(000) = 1424, R=0.0349, Rw =0.0818. The Eu(II) ion is coordinated to a chloride and seven oxygen from seven monodenate dimethylsulfoxides. The coordination polyhedron around Eu is a distorted squar antiprism polyhedron. Tetraphenylboron anions BPh_1^- are charge equilibrium ions.

Keywords: synthesis crystal structure lanthunide complex dimethylsulfoxide tetraphenylboron