(18) 65/-66 Vol. 15, No. 5

Sep., 1999

研究简报

噻吩甲酰基吡唑啉酮缩乙二胺配合物 的合成、表征及生物活性

于文锦 李锦州" 李 刚

(哈尔滨师范大学化学系,哈尔滨 150080)

C641.4

0625.632

关键词:

酰基吡唑啉酮

双席夫碱

配合物

生物活性

分类号:

82二胺

酰基吡唑啉酮缩二胺是新型双席夫碱试剂,对金属离子其有较强的萃取分离作用。由于该试剂含有多个 C=O、C=N 功能团,其相应配合物应具有一定的传递电子作用、磁交换作用,载氧功能及抗菌、抗病毒生物活性。为了拓宽酰基吡唑啉酮类化合物的研究领域、开发新型螯合萃取剂、功能试剂、生物活性试剂,我们合成了未见报道的双席夫碱配体 N,N'-双[(1-苯基-3-甲基-5-氧-4-吡唑啉基)2-噻吩次甲基]乙二亚胺(HPMTHP)2en 及其 Cu(I)、Co(I)、Ni(I)、Pd(I)、Pt(I)配合物,初步研究了配合物的结构、一般性质和抗菌活性。

1 实验部分

1.1 试剂与仪器

1-苯基-3-甲基-4-(2-噻吩甲酰基)吡唑啉酮-5(HPMTHP)按文献^[3]方法合成。其 m. p. 为 148~149℃。氯化钯、二氯化铂为化学纯,醋酸铜、醋酸钴、醋酸镍及其他试剂均为分析纯。

Perkin-Elmer 2400 型元素分析仪。S 含量用氧瓶燃烧法测定。金属含量用 EDTA 法和光度法测定。Perkin-Elmer FTIR-1730 型红外光谱仪(KBr 压片)、岛津 UV-265 型紫外可见分光光度计、Finnigan 4021 型质谱仪、MF-2 型磁天平、DDS-11A 型电导率仪、X, 型熔点仪。

1.2 (HPMTHP)gen 的合成

将摩尔比 2:1 的 HPMTHP 和乙二胺溶于无水乙醇中,回流 HPMTHP 溶液,缓慢滴加乙二胺溶液,继续回流 2.5 h.析出沉淀,经过滤,无水乙醇洗涤,氯仿-丙酮重结晶,得浅黄色粉状晶体,产率 76.3%, m.p. $192\sim193$ °C。元素分析按化学式 $C_{32}H_{28}N_6S_2O_2$ 计算,测定值(计算值)%; C 64.72(64.83), H 4.69(4.77), N 14.16(14.18), S 10.63(10.82)。质谱的分子离子蜂为 592(15.62)。

1.3 配合物的合成

收稿日期:1998-10-06。 收修改稿日期:1999-01-25。

黑龙江省自然科学基金资助项目(No. B9702)。

* 通讯联系人。

第一作者:于文锦、男、54岁、副教授:研究方向:生物无机化学。

称取 2.0 mmol(1.186 g) (HPMTHP)₂en 溶于 60 mL 热 DMSO 中,2.0 mmol 的金属盐溶于 50 mL 无水乙醇中。加热回流配体,滴加金属离子溶液(Co²+在 N。保护下反应)很快出现沉淀,继续回流 1 h,冷却后过滤,用 1:1 的无水乙醇和 DMSO 溶液洗涤沉淀数次,70℃减压干燥得有色固体。

2 结果与讨论

2.1 配合物的组成及一般性质

表 1 列出了配合物的组成分析结果,测定值与计算值相符,配合物组成符合化学式 $[M(PMTHP)_2en]$ 。在 $18 \, \mathrm{C}$, $1 \times 10^{-3} \, \mathrm{mol} \cdot \mathrm{L}^{-1} \, \mathrm{DMF}$ 溶液中配合物的摩尔电导值在 $2.3 \sim 4.1 \, \mathrm{S} \cdot \mathrm{cm}^2 \cdot \mathrm{mol}^{-1}$ 之间,均属非电解质范围[4],配合物在空气中稳定,易溶于氯仿、苯、丙酮、DMF、 微溶于 DMSO、乙醇,难溶于水。

表 1 配合物的元素分析数据和摩尔电导

Table 1 Elemenal Analysis Data and Molar Conductance (S · cm¹ · mol⁻¹) of Complexes

compd.	colour	m. p. /℃	found (calc.)%					
			С	К	N	s	М	.154
CuL ⁴	pale green	303-304	58. 38(58. 73)	4.06(4.01)	12.71(12.85)	9. 70(9. 80)	9, 59(9, 71)	3.2
CoL	orange	314-315	59. 03(59. 15)	4.01(4.04)	12.77(12.94)	9. 79 (9. 87)	8.92(9.07)	2. 3
NiL	brown green	281-282	58. 83(59. 17)	3.98(4.04)	12. 83(12. 94)	9.81(9.88)	8,87(9,04)	2. 6
PdL	yellow	317 dec.	54. 87 (55. 12)	3.72(3.77)	11.98(12.06)	9.16(9.20)	15. 07(15. 26)	3. 3
此	yellow	322 dec.	48-76(48.90)	3.30(3.34)	10.56(10.70)	8.03(8.16)	24. 67(24. 82)	4.1

$$a_1 L^{2-} = (PMTHP)_2ea_1$$
; H_3C $C = N$ $N = C$ CH_3 R_4 CH_5 R_4 CH_5 CH_5

2.2 红外光谱

配体与配合物的红外特征振动吸收频率(见表 2)指出:配合物相互间各峰位移差别不大,但与配体吸收峰有明显差别。原配体在 3091 cm⁻¹处出现属于吡唑啉酮的烯醇式羟基与亚胺基团氮原子氢键的 ν_{0-H·····}[^[3],该峰在配合物中消失,且在 3100 cm⁻¹以上区域无 ν_{0-H}吸收峰,说明羟基已去质子化。 ν_{C-N}从 1632 cm⁻¹移至 1603~1596 cm⁻¹附近,说明亚胺中氮原子已参与配位^[6]。游离配体吡唑啉酮螯合环的伸缩振动 1512 cm⁻¹移至 1498~1486 cm⁻¹附近,吡唑啉酮环的 C···O 伸缩振动从 1363 cm⁻¹移至 1347~1341 cm⁻¹附近,上述变化表明随着配位原子参与成键,影响了相关基团的键力常数,致使振动频率变化^[7]。另外形成配合物后,于 467~459 cm⁻¹和 421~413 cm⁻¹处出现新吸收峰,可分别指认为 ν_{M-N} cn^[8]。

2.3 磁矩和电子光谱

配合物的磁化率以[Ni(en),]S₂O₃ 和 Pascal's 常数作为顺反磁性校正。有效磁矩采用公式 $\mu_{ul} = (X_m \cdot T)^{\frac{1}{2}}$ 计算,其结果列于表 2。 μ_{ul} 数值表明 Cu(I)和 Co(I)的配合物是顺磁性的,其它配合物是反磁性,各配合物均为低自旋配合物,其中心离子可能以 dsp^2 杂化[9]。

あ活性 ・659・

表 2 配体及配合物的红外光谱特征吸收数据和磁矩

Table 2 IR Spectral Data and Magnetic Moments (T = 298K) of Ligand and Its Complexes

compd	1R 、 p/cm ⁻¹							
	C=N	C≕C	C0	M-O	M-N	0-HN	10X _M *	_{жен} (В. М.)
H₂L	1632	1512	1363			1608		
CoL	1601	1498 -	1341	467	418		1.81	2.08
CuL	1597	1492	1347	461	420		1.48	1.88
NiL	1603	1486	1344	463	413			
PdL	1598	1495	1342	459	417			
PtL	1 59 6	1489	1346	464	421			

a. Xu. molar magnetic suscentibility (emu • mol-1)

电子光谱是在 DMF 中测定的,数据列于表 3。配体在紫外区 232、256、315 nm 处出现了 3 个吸收峰,它们分别指认为芳环、亚胺基的 $\pi \to \pi^*$ 跃迁和亚胺基的 $n \to \pi^*$ 跃迁产生的吸收峰。形成配合物后,三个峰均发生位移,可能是亚胺基上的 N 与中心金属离子产生了配位作用所致。配合物在 $425 \sim 571$ nm 区域出现强度较弱的 d-d 跃迁吸收峰,其中铜、钴配合物的 552、571 nm 吸收峰归属 为 $B_{1s} \to {}^2A_{1s}$ 的电子跃迁,镍、钯、铂配合物的 548、425、462 nm 吸收峰指认为 $2^2A_{1s} \to {}^2B_{1s}$ 的电子跃迁 2^{10} 。这些峰的出现表明配合物均以平面正方形构型存在,这与磁矩数据相一致。

表 3 配体及配合物的电子光谱数据

Table 3 UV-Vis Spectral Data [\(\lambda_{\text{max}}(nm)\), \(\lambda_{\text{f}}\)] of Ligand and Its Complexes

compd.	λ_1	λ_2	λ_3	λ,
H ₂ L	232, 4. 37	256, 4, 48	315,4.63	
CoL	221,4.53	262,4.41	326,4.58	571.2.19
CuL	220,4.43	251,4.67	320.4.33	552,2.39
NiLP	225.4.34	268, 4, 39	327.3.37	548 ,2 . 0 7
PdL	226,4.55	269,4.25	323,4.38	425.3.47
PtL	221,4.43	264,4.54	321,3.72	462,3.22

综上所述可推测:配体为四齿配体,通过二个氧原子和二个亚胺基氮原子与金属离子配位,配合物的构型为平面正方形。

2.4 抗菌生物活性

配体和部分配合物对金黄葡萄球菌、枯草杆菌、大肠杆菌、白菜软腐菌、菜豆晕疫菌等五种菌株进行了抗菌活性实验。为了对照杀菌活性,也同法做了乙酸铜(CuAc₂)的抗菌活性,所测数据均为菌株致死率。杀菌剂用量为50 mg·L⁻¹。抗菌实验采用离体的含毒介质法^[11]。从表4实验结果可知,配体和乙酸铜对上述菌株有一定的抗菌活性,形成配合物后抗菌作用明显增强(活性提高30~100%)。实验表明此类配合物具有生物活性。这为进一步拓宽其在生物领域的应用奠定了基础。

表 4 配体及部分配合物的抗菌活性

Table 4 Antibacterial Activity of Ligand and Some Complexes (lethal rate %)

compd.	S. Aureus	B. Subtillis	E. Coli	E. Carotovora	C. Placcumfactens	
H ₂ L	29	31	26	37	40	
$CuAc_2$	26	28	19	32	35	
CuL	47	42	37	55 .	62	
NıL	45	46	51	64	61	
P tL	49	48	42	53	58	

参 考 文 献

- [1] LI Jin-Zhou(李锦州)、AN Yu-Mei(安郁美)、YU Wen-Jin(于文锦) et al Huzzue Ship (Chem. Reagent)、1996,18 (6)、327.
- [2] Costes J. P., Isabel M. Trans. Met. Chem., 1988, 13, 131.
- [3] Jensen B. S. Acta Chem. Scand. , 1959, 13, 1668.
- [4] Geary W. J. Coord. Chem. Rev., 1971,7(1),81.
- [5] Faniran J. A., Patel K. S. J. Inorg. Nucl. Chem., 1974,36,1547.
- [6] Ueno K., Martell A. E. J. Phys. Chem., 1955,59(10), 998.
- [7] LI Jin-Zhou(李锦州), DU Xiao-Yan(杜晓燕), YU Wen-Jin(于文锦) Zhongguo Xutu Xueboo (J. Chinese Rare Barth Soc.), 1993,11(3),264.
- [8] Mital S. P., Singh R. V. Current Science, 1980, 49(4), 130.
- [9] Chem L. S., Cummings S. C. Inorg. Chem., 1978,17(9),2358.
- [10] Lever A. B. P. Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984.
- [11]XIE Xiao-Juan(谢筱娟), CHEN Chuan-Feng(陈传峰), XIE Qing-Lan(谢庆兰) et al Yangyang Huzzue (Chanese J. Appl. Chem.), 1992,9(6),52.

SYNTHESIS, CHARACTERIZATION AND BIOACTIVITY OF COMPLEXES OF THENOYLPYRAZOLONE-ETHYLENEDIMINE

YU Wen-Jin Ll Jin-Zhou Ll Gang
(Department of Chemistry, Harba Normal University, Harba 150080)

A new ligand N,N'-bis[(1-phenyl-3-methyl-5-oxo-4-pyrazolinyl)-2-thenoylmethylidyne]ethyl-enediimine (HPMTHP)₂en and its five complexes have been sythesized. These complexes have the general formula [M(PMTHP)₂en], where M = Cu(1), Ni(1), Co(1), Pd(1), Pt(1). They were characterized by elemental analysis, IR, UV-vis, magnetic moments and molar conductance. The results showed that the complexes are all of quadricoordinate square-planar geometry. The antibacterial experiment indicated that they have high antibacterial activities against S. aureus, B. subtillis, E. coli, E. carotovora, C. flaccumfaciens.

Keywords; acylpyrazolone bis-schiff base complex bioactivity