无机化学学报 CHINESE JOURNAL OF INORGANIC CHEMISTRY

 普普资讯 http://v qvip.com Vol. 15. No. 5 Sep., 1999

○ 研究简报 \$

# 一维链状氧族化合物[Mn(en)<sub>3</sub>]CdSnTe<sub>4</sub> 的制备

# 及其半导体性质的研究

# 陈震。\*\* 王如骥。

(福建师范大学实验中心,福州 350007)

("清华大学分析中心,北京 100084)

0698 (614.711

关键词: 氧酸碲化物 晶体结构 无机多聚物 有机溶剂热生长技术 分类母: 0612,6 结晶 辐子 化含化生成

众多三元或四元的金属碲化物如:K<sub>2</sub>BaSnTe,、RbTaCu<sub>2</sub>Te<sub>4</sub>、K<sub>2</sub>Ag<sub>2</sub>SnTe,<sup>[1]</sup>、KHgSnTe<sub>4</sub><sup>[2]</sup>等均 是在 400~500 C左右的温度下,以直接反应法制备得到的。在该领域中采用以有机物为溶剂 的低温合成技术是 90 年代以来才取得发展并逐渐成熟起来的。如 RbHgSbTe<sub>3</sub><sup>[3]</sup>、Rb<sub>2</sub>Hg<sub>3</sub>Te,<sup>[4]</sup> 都是采用该低温合成技术而制备成功的。有机溶剂热生长技术与传统的水热法(Hydrothermal) 不同之处在于可以根据实验的需要而选用具有不同沸点、不同极性及带有不同官能团的有机 溶剂,从而拓宽了该技术的应用范围。本文报道的[Mn(en)<sub>3</sub>]CdSnTe<sub>4</sub> 就是以乙二胺为溶剂,以 SnTe, MnCl<sub>2</sub>, CdCl<sub>2</sub> 与 Te 为原料,在 180 C下反应得到的。

# 1 试 验

## 1.1 晶体的生长

在惰性气体(Ar)的气氛中,将 0.25 mmol(0.06 g)的 SnTe, 0.075 mmol(0.096 g)的 Te, 0. 25 mmol(0.03 g)的 MnCl<sub>2</sub>,0.25 mmol(0.05 g)的 CdCl<sub>2</sub> 混合后放入厚壁的 Pyrex 管中,加入 0. 4 mL 的乙二胺(en),封管后放入 180℃的炉子中反应 7 天。生成的[Mn(en)<sub>3</sub>]CdSnTe, 先以 30%的乙醇水溶液淋洗以除去过剩的氯化物,继而以乙醚干燥之,得灰色桂状的晶体。

### 1.2 晶体结构的测定

选取大小为 0. 2×0. 3×0. 3 mm<sup>3</sup> 的[Mn(en)<sub>3</sub>]CdSnTe<sub>4</sub> 晶体于 CAD 四园衍射仪上,采用石 墨单色器,MoKa 射线,在 6. 2°< $\theta$ <10. 5°的范围内扫描,收集到 25 个衍射点,以测定晶胞参 数。在 2 $\theta$ <50°的范围内收集到 4003 个独立的衍射点,其中可观察点为 3796 个[I>2 $\sigma$ (I)]。数 据经 LP 因子和经验吸收校正。直接法计算可得 Sn, Cd, Te 和 Mn 原子的位置,氮,碳原子的位置以差值 Fourier 法确定,氢原子位置从理论计算中得到。采用  $\omega$ = 1/ $\sigma$ <sup>2</sup> 权重方式全矩阵最小

- \*通讯联系人。
- 第一作者:陈 震.男,52岁.研究员、日本京都大学工学博士;研究方向:材料化学。

收稿日期:1998-10-13。 收修改稿日期:1998-11-30。 国家教育委员会回国留学人员工作资助费支持项目

二乘法对全部的非氢原子进行各向异性的精细修正。偏差因子  $R_1 = 0.034$ 、 $wR_2 = 0.061$ 。结构 计算使用 SHELX97 程序,在 IBM PC586 计算机上完成。兹将主要的键长(Å)、键角(°)数据及 非氢原子坐标和热参数列于表 1 与表 2 中。

#### 1.3 Band gap 的测试

以 Shimadzu UV-310PC 作[Mn(en)<sub>3</sub>]CdSnTe, 晶体的半导体性质测试。以 Hitachi S-2400 扫 描电镜测得试样的颗粒度均大于 5 μm, 以 BaSO<sub>4</sub>(100%反射)为参比, 光吸收数据以 Kubelka-Munk<sup>[5,6]</sup>方程计算之。

#### 1.4 实验样品

实验样品 Te(99.5%), Sn(99.9%), MnCl<sub>2</sub>(99.9%), CdCl<sub>2</sub>(99.9%)均为市售 Strem 公司 出品。SnTe 是在 450℃下,以 Sn 与 Te(1:1)直接反应制得。粉末 X-射线衍谱图上无其它杂质 的诸峰存在。溶剂 en(99.5%)为 Fisher Scientific 公司出品。

## 2 结果与讨论

#### 2.1 晶体结构的描述

图 1 为[Mn(en)<sub>3</sub>]CdSnTe<sub>4</sub>晶体结构的立体图。如图 1(a)所示,阳离子基团[Mn(en)<sub>3</sub>]<sup>2+</sup>处 于由 Zintl Anion、L[CdSnTe<sub>4</sub>]<sup>2-</sup>基团组成的长链之间。图 1b 为[CdSnTe<sub>4</sub>]<sup>2-</sup>阴离子基团的立体 结构图。在一个晶胞内有 8 个独立的 Te 原子。其中 Te(4), Te(6)是作为  $\mu_3$  桥原子与两个 Cd 原子及一个 Sn 原子相连。Te(2), Te(3), Te(5), Te(7)是作为  $\mu_3$  桥原子与一个 Cd 及一个 Sn 原子相连。Te(1), Te(8)为链的终端原子。在长链<sup>2</sup>[CdSnTe<sub>4</sub>]<sup>2-</sup>基团中,Cd, Sn 原子以不等性 的四面体结构与 Te 相连,因此该结构也可以被描述为共棱的 CdTe<sub>4</sub> 四面体与 SnTe<sub>4</sub> 四面体在 a 方向上的无限延伸,即:-CdTe<sub>4</sub>-SnTe<sub>4</sub>-CdTe<sub>4</sub>-SnTe<sub>4</sub>-。表 1 给出若干有代表性的键长和 键角的数据。CdTe<sub>4</sub> 四面体的平均键长(2.842Å)比 SnTe<sub>4</sub> 四面体的平均键长(2.741Å)长,其 顶角 Te(3)-Cd(1)-Te(5)-[130.09(4)<sup>o</sup>]也比 SnTe<sub>4</sub> 四面体的顶角 Te(2)-Sn(1)-Te(3)-[113.80(4)<sup>o</sup>]大,因此 CdTe<sub>4</sub> 四面体占据的空间体积比 SnTe<sub>4</sub> 四面体大。

 $SnQ_4^{-}(Q=S, Se, Te)$ 是具有四面体结构的、稳定的 Zintl 阴离子基团。当阳离子为碱金属和碱土金属时多生成简单的,分立的零维分子结构,如 Na<sub>4</sub>SnTe<sub>4</sub>, Ba<sub>2</sub>SnS<sub>4</sub>, Na<sub>4</sub>SnS<sub>4</sub> 及 KBaSnTe<sub>4</sub><sup>[7~10]</sup>,在 KBaSnTe<sub>4</sub> 中 SnTe<sub>4</sub><sup>--</sup>分立地占据着立方晶胞的 8 个顶角和体心的位置、K 和 Ba 原 子占据棱中点和面心的位置。而当阳离子为过渡金属时则生成多维的分子结构,如 K<sub>2</sub>HgSnTe<sub>4</sub> 为一维链状结构,[Mn(en)<sub>3</sub>]Ag<sub>4</sub>Sn<sub>2</sub>Te<sub>4</sub><sup>[11]</sup>为二维层状的结构,K<sub>2</sub>Ag<sub>2</sub>SnTe<sub>4</sub> 为三维立体结构。

在二维的[Mn(en)<sub>3</sub>]Ag<sub>6</sub>Sn<sub>2</sub>Te<sub>6</sub>中 Sn-Te 平均键长为 2.740 Å,在三维的 K<sub>2</sub>Ag<sub>2</sub>SnTe<sub>4</sub>中 Sn-Te的平均键长为 2.745 Å,与一维[Mn(en)<sub>3</sub>]CdSnTe<sub>4</sub>中 Sn-Te 平均键长 2.741 Å 大致相 同,但键角却有较大的不同,如在[Mn(en)<sub>3</sub>]Ag<sub>6</sub>Sn<sub>2</sub>Te<sub>4</sub> 中 Te-Sn-Te 的两组键角分别为 108.07(5)°和 110.83(5)°,均较接近 109°28′,为比较规正的四面体。而在[Mn(en)<sub>3</sub>]CdSnTe<sub>4</sub>中 Te-Sn-Te 的键角最小的为 98.09(4)°,最大的为 117.27(4)°。

阳离子基团[Mn(en)<sub>s</sub>]<sup>2+</sup>是以 Mn<sup>2+</sup>离子为中心,乙二胺为配位体的螯合物,如图 1-c 所示。三个乙二胺分子两端的 6 对孤对电子分别填充在中心锰离子外层的 6 个空轨道:5d<sup>2</sup>4s<sup>1</sup>4p<sup>3</sup>上,形成了以锰离子为中心的三次轴对称 C<sub>s</sub>。



ţ

(a)





| 箆   | 15  | 卷   |
|-----|-----|-----|
| 212 | 1.0 | 125 |

| 表 1 主要的键长和键角                |                              |                              |                      |  |  |  |  |  |  |
|-----------------------------|------------------------------|------------------------------|----------------------|--|--|--|--|--|--|
|                             | Table 1 Selected Bnod Ler    | ighs $(A)$ and Bond Angles ( | °)                   |  |  |  |  |  |  |
| Sn(1)-Te(1) 2.678(1         | Sn(2)-Te(8) 2.681(2)         | Cd(2)-Te(2a) 2.816(1)        | Mn(1)-N(6) 2.20(1)   |  |  |  |  |  |  |
| Sn(1)-Te(2) 2.753(1)        | Cd(1)-Te(3) 2.795(1)         | Cd(2)-Te(4a) 2.901(1)        | Mn(2)-N(7) 2.267(9)  |  |  |  |  |  |  |
| Sn(1)-Te(3) 2.733(1)        | Cd(1)-Te(4) 2,881(1)         | Mn(1)-N(1) 2.25(1)           | Mn(2)-N(8) 2.277(9)  |  |  |  |  |  |  |
| Sn(1)-Te(4) 2.799(1)        | Cd(1)-Te(5) 2.800(1)         | Mn(1)-N(2) 2.19(1)           | Mn(2)-N(9) 2.27(1)   |  |  |  |  |  |  |
| Sn(2)-Te(5) 2.748(1)        | Cd(1)-Te(6) 2.893(1)         | Mn(1)-N(3) 2.23(2)           | Mn(2)-N(10) 2.24(1)  |  |  |  |  |  |  |
| Sn(2)-Te(6) 2.815(1)        | Cd(2)-Te(6) 2.863(1)         | Mn(1)-N(4) 2.31(1)           | Mn(2)-N(11) 2.275(1) |  |  |  |  |  |  |
| Sn(2)-Te(7) 2.760(1)        | Cd(2)-Te(7) 2.802(1)         | Mn(1)-N(5) 2.18(1)           | Mn(2)-N(12) 2.30(1)  |  |  |  |  |  |  |
| Te(1)-Sn(1)-Te(2)           | 112.12(4)                    | Te(3)-Cd(1)-Te(4)            | 94.77(4)             |  |  |  |  |  |  |
| Te(1)-Sn(1)-Te(3)           | 114-80(4)                    | Te(3)-Cd(1)-Te(5)            | 130.09(4)            |  |  |  |  |  |  |
| Te(1)-Sn(1)-Te(4)           | 116.22(4)                    | Te(3)-Cd(1)-Te(6)            | 115.15(4)            |  |  |  |  |  |  |
| Te(2)-Sn(1)-Te(3)           | 113.80(4)                    | Te(4)-Cd(1)-Te(5)            | 114.04(4)            |  |  |  |  |  |  |
| Te(2)-Sn(1)-Te(4)           | 100.29(4)                    | Te(4)-Cd(1)-Te(6)            | 104.79(4)            |  |  |  |  |  |  |
| Te(2)-Sn(1)-Te(4)           | 98.09(4)                     | Te(5)-Cd(1)-Te(6)            | 96.53(4)             |  |  |  |  |  |  |
| Te(5)-Sn(2)-Te(6)           | 99.60(4)                     | Te(6)-Cd(2)-Te(7)            | 97.68(4)             |  |  |  |  |  |  |
| Te(5)-Sn(2)-Te(7)           | 111.15(4)                    | Te(6)-Cd(2)-Te(2a)           | 108.79(4)            |  |  |  |  |  |  |
| Te(5)-Sn(2)-Te(8)           | 117.13(4)                    | Te(6)-Cd(2)-Te(4a)           | 109.61(4)            |  |  |  |  |  |  |
| Te(6)-Sn(2)-Te(7) 99.81(4)  |                              | Te(7)-Cd(2)-Te(2a)           | 133.34(4)            |  |  |  |  |  |  |
| Te(6)-Sn(2)-Te(8) 108.71(5) |                              | Te(7)-Cd(2)-Te(4a)           | 110.24(4)            |  |  |  |  |  |  |
| Te(7)-Sn(2)-Te(8)           | Fe(7)-Sn(2)-Te(8) 117. 27(4) |                              | 96.38(4)             |  |  |  |  |  |  |
| Sn(1)-Te(2)-Cd(2b)          | 82.25(4)                     | Cd(1)-Te(4)-Cd(2b)           | 105.60(4)            |  |  |  |  |  |  |
| Sn(1)-Te(3)-Cd(1)           | 84.95(4)                     | Cd(1)-Te(6)-Cd(2)            | 103.91(4)            |  |  |  |  |  |  |
| Sn(1)-Te(4)-Cd(1)           | 82.18(4)                     | Sn(1)-Te(4)-Cd(2b)           | 79.96(4)             |  |  |  |  |  |  |
| Sn(2)-Te(5)-Cd(1)           | 83. 11(4)                    | Sn(2)-Te(7)-Cd(2)            | 82.22(4)             |  |  |  |  |  |  |
| Sn(2)-Te(6)-Cd(1)           | 80.29(4)                     |                              |                      |  |  |  |  |  |  |

### 2.2 半导体性质

用紫外反射光谱仪 UV-310PC 测得的 [Mn(en)<sub>3</sub>]CdSnTe;晶体的反射光谱如图 3 所示。当照射光的能量(hv)与其 band gap 相 等时,在 UV 吸收谱图上可以看出有一明显 的突跃。根据 Kubelka-Munk 方程<sup>[3,5]</sup>;

 $\alpha = S(h\nu - E_g)^2 \tag{1}$ 

式中 a 为吸收系数(absorption coefficient), 可将散射因子 S(scattering factor)看作一个 常数,以(a/S)<sup>1/2</sup>对光能量 hv 作图,以外延 法可求得[Mn(en)<sub>3</sub>]CdSnTe<sub>4</sub>晶体的 band gap 为 1.45 eV,为一半导体材料。



图 2 标题化合物的光吸收谱图

Fig. 2 Photo energy spectrum of [Mn(en);]CdSnTe<sub>1</sub>(The inset is the optical absorption spectrum)

|             | Table 2 N   | Nonhydrogen Atomic Coordinates and Equivalent Isotropic Temperature Factors $(A^{(i)})$ |                   |                  |               |              |  |
|-------------|-------------|-----------------------------------------------------------------------------------------|-------------------|------------------|---------------|--------------|--|
| atoms       | £11         | $\mathbf{C}_{22}$                                                                       | f ( <sub>12</sub> | (1,a             | <i>6</i> 11   | U12          |  |
| Sol         | 0.0354(4)   | 0.0324(4)                                                                               | 0 ((302(4)        | 0. 0090, 3)      | 0.0032(3)     | -0.0125(3)   |  |
| Sn2         | 0. 0340741  | 0.0353(4)                                                                               | U. 0395(4)        | -0.0020(3)       | 0.0010(4)     | -0.0089(3)   |  |
| Cd]         | D. 0415×4)  | 0.0385(5)                                                                               | 0 01(2(5)         | — 0. Qu91(4)     | 0.0095(4)     | 0. 0152 - 41 |  |
| Cu2         | ) 0408(4)   | 0.0322(4)                                                                               | 0.0454751         | ~ 0 0080(4)      | -0.0043(4)    | -0.0074(4)   |  |
| Ma1         | 0.0379(9)   | 0.048(])                                                                                | 0.035(1)          | -0.0105-8)       | 0.0414(8)     | 0.0092(8)    |  |
| Mn2         | 0.6337(9)   | 0.0337(9)                                                                               | 0.045(7)          | 0.0089(8)        | 0.0006(8)     | -0.0117(7)   |  |
| le!         | 0 3469(1)   | 0.0395(4)                                                                               | D. 0447 5J        | 0.0018-4)        | 0.0029(4)     | -0.0139(4)   |  |
| te2         | 0.0395(1)   | 0.0399(1)                                                                               | 0.0449(3)         | 9. e132(4)       | 0.0107(4)     | 0.0091(3)    |  |
| Te3         | 0.0593(5)   | 0.0564(5)                                                                               | 0 0434(5)         | -0.0215(4)       | 0.0067(4)     | ~ 0.0331+4)  |  |
| Te4         | Ú. 034N(4)  | 0.0363(4)                                                                               | 0 0330(1)         | 0. 0127/3)       | 0.0041(3)     | U 0129(3)    |  |
| 115         | 0.0406(4)   | 0.0364(4)                                                                               | 0.0604(6)         | 0.0007(4)        | 0.0084(1)     | 0.0007(4)    |  |
| Tt S        | 0.0360(4)   | 0.0279(3)                                                                               | 1 0477(5)         | -0.0076(3)       | 0. 0008 ( 3 ) | -0.0089(3)   |  |
| Te7         | 0. 046si 13 | 0.0324(4)                                                                               | u (601)6)         | -0.0040(1)       | -0.0029(4)    | - 0 0151(3)  |  |
| Te8         | 0.0688(6)   | 0.1130(8)                                                                               | J. (379) 5)       | -6.0125(5)       | 0.0042(5)     | -C. 0288/6)  |  |
| N1          | 0.117(12)   | 0.099111)                                                                               | Ű.U99(12)         | -0.01(1)         | 0.00(1)       | 0.045(9)     |  |
| N2          | 0.61(5)     | 0.623(7)                                                                                | 0.08(1)           | <b>→0.002(8)</b> | -0.02(2)      | 0.01(2)      |  |
| N3          | 0.063(\$/   | 0.18(2)                                                                                 | 0.17(2)           | 0.08:11          | -0.01(1)      | -0.02(1)     |  |
| N 1         | 0.10(1)     | 0.13(1)                                                                                 | 0.08())           | -0.042(9)        | -0.017(9)     | 0.03(1)      |  |
| N5          | 0.21(1)     | 0.38(2)                                                                                 | 0 13(1)           | -0.14(1)         | 0.09(1)       | - 0.25(1)    |  |
| <b>N</b> 6  | 0.10(1)     | 0.24 2)                                                                                 | 0.15(2)           | - 9 12:11        | 0 03(1)       |              |  |
| N7          | 0.044(6)    | 0.029(5)                                                                                | 0.090(9)          | - 0.017(6)       | 0.006(6)      | 0.010(5)     |  |
| NB          | 0.048(6)    | 0.036(5)                                                                                | 0.065-7)          |                  | 0.004(6)      | 0, 613:57    |  |
| NS          | 0.051(6)    | 0.071(8)                                                                                | 0.350(7)          | -0.303(6)        | 0.003(6)      | -6.6(1(6))   |  |
| N10         | 0.043(5)    | 0.038(6)                                                                                | 6 04317)          | -U. 006(A)       | 0.000(5)      | -0.008·1)    |  |
| NU          | 0 052+61    | 0.034(5)                                                                                | 0.056(7)          | 0.000(5)         | 0.00015)      | -0.022(4)    |  |
| N13         | 0.046(5)    | 0.042(5)                                                                                | 0.057(7)          | -0.307(5)        | - 0.009(5)    | 0.023(4)     |  |
| CI          | 0.24(3)     | 0.10:2)                                                                                 | ù.04(])           | -0.00(1)         | 0.02(1)       | 0.08(2)      |  |
| C2          | 0.18(2)     | 0.031(8)                                                                                | 0.08(1)           | -0.005(8)        | -0.03(!)      | -0.01(1)     |  |
| C3          | 0.020(6)    | 0.11(1)                                                                                 | 0.10(1)           | -0.04(1)         | -0.014'7)     | 0.017(7)     |  |
| C4          | 0.060(9)    | 0.056(8)                                                                                | 0.061(9)          | 0.013(?)         | -0.015(7)     | 0.009(7)     |  |
| C5          | 0.08(1)     | 0.26(3)                                                                                 | 0.09(2)           | 0.01(2)          | 0.00(1)       | -0.08(2)     |  |
| C6          | 0.11(1)     | 0.24(2)                                                                                 | 0.19(2)           | 0.14(2)          | 0.02(1)       | +0.12(1)     |  |
| C7          | 0.12(1)     | 0.10(1)                                                                                 | 0.20(2)           | -0.03(2)         | 0.09(2)       | - 0.07(1)    |  |
| CB          | 0.13(1)     | 0.09(1)                                                                                 | 0.12(2)           | 0. 05(1)         | 0.06(1)       | -0.08(1)     |  |
| C9          | 0.10(1)     | 0.18(2)                                                                                 | 0.08(1)           | 0.10(1)          | ←0.02(1)      | 0.02(1)      |  |
| <b>C</b> 10 | 0.10(1)     | 0.07(1)                                                                                 | 0.07(1)           | 0. 027(9)        | 0.00(1)       | 0. 010(9)    |  |
| C11         | 0.041(6)    | 0.040(7)                                                                                | 0.08(1)           | 0.003(7)         | -0.013(7)     | -0.023(6)    |  |
| C12         | 0.055(8)    | 0.055(8)                                                                                | 0.073(9)          | -0.032(7)        | - 0. 022(7)   | 0.014(6)     |  |

表 2 非氢原子坐标和热参数

" The exponent takes the form  $z = 2\pi^2 \Sigma \Sigma U_{ij} h_i h_j \sigma_i^{-1} a_i^{-1}$ 

### 参考文献

- [1] Li J., Guo H. Y., Proserpio D. M., Sironi A. J. Solid State Chem., 1995,117,247.
- [2] Dhingra S. S. , Haushalter R. C. Chem. Mater. 1994.0,2376.
- [3] Li J., Chen Z., Wang X., Proserpio D. M. J. Alloys and Comp. 1997,282~283,28.
- [4] Li J., Chen Z. et al Inorg. Chem, 1997, 38, 684.

.

.

[5] Wesley N. M. et al Reflectance Spectroscopy, Interscience Publishers, John Wiley & Sons, Inc. New York, London/

第15卷

Sydeny, 1996.

[6] Dhingra S., Kanatzidis M. G. Science, 1992, 258, 1769.

[7] Susa K., Sterinfink H. J. Solid. State. Chem., 1971,3,75.

[8] Jumas J. C., Philippot E. et al J. Solid State Chem., 1975, 14, 319.

[9] Eisenmann B., Schafter H., Schord H. Z. Naturforsch., 1983, B38, 7.

[10]Li J., Guo H. Y. J. Solid State Chem., 1995, 117, 247.

## SYNTHESIS OF THE ONE DIMENSIONAL TELLURIDE: $[Mn(en)_3]CdSnTe_4(I)$ AND ITS SEMICONDUCTOR CHARACTERISTICS

ZHEN Chen<sup>®</sup> WANG Ru-Ji<sup>b</sup>

(\*Experiment Center of the Pujum Normal University, Fuzhou 350007) (\*Analysis Center, Tsinghua University, Berjing 100084)

The solvothermal technique was used for the synthesis of  $[Mn(en)_3]CdSnTe_4(I)$ . The crystal structure has been determined by single crystal X-ray diffraction techniques. The crystal belongs to the triclinic, space group P1(No. 1) with unit cell a=9. 134(2), b=10.085(3), c=12.691(3)(Å),  $a=73.52(2)^\circ$ ,  $\beta=86.05(2)^\circ$ ,  $\gamma=76.43(2)^\circ$ ,  $V=1089.7(5)Å^3$ , Z=2. The results show that the structure is an one-dimensional framework containing a linear chain Zintl anion,  $\frac{1}{\infty}[CdSnTe_4]^{2-1}$  and a complex cation,  $[Mn(en)_3]^{2+}$ , Optical studies on the powder sample of I suggested that the compound is a semiconductor with a band gap of 1.45 eV.

Keywords, chalcogenides solvothermal technique crystal Structure inorganic polymer