
维普资讯 http://www.cqvip.com Vol. 15 、No. 5 Sep. , 1999

新究简报

0614

2,4-二羟基苯乙酮缩氨基硫脲及其金属配合物的合成与性质

王建华"<u>杜</u>军 (重庆大学化学系,重庆 400044)

缩氨基硫脲类衍生物与过渡金属形成的配合物具有抗菌、抗病毒和抗癌等生物活性[1-3]。不同醛(酮)类的缩氨基硫脲和金属形成的配合物的生物活性差异很大,有关此方面的研究近年来十分活跃。为进一步深入研究该类配合物的合成、性质与应用之间的关系,探索高效低毒、抗菌能力强的抗菌类药物,我们合成了 2,4-二羟基苯乙酮缩氨基硫脲及其与过渡金属离子形成的配合物,并利用元素分析、红外光谱、紫外-可见光谱、磁化率等手段对它们进行了表征,研究了它们的部分抗菌性能。

1 实验部分

1.1 试剂和仪器。

氨基硫脲、冰醋酸、醋酸铜、醋酸钴、醋酸镍,均为分析纯。2,4-二羟基苯乙酮按文献^[4]合成熔点为142~144℃。

Perkin Elmer 240C 元素分析仪, Nicolet 170SXFT 型红外光谱仪, 岛津 XD-3AX 粉末衍射仪, DDS-11A 型电导率仪, CTP-F82 型法拉第磁天平, IL-Plasma-200ICP 离子发射光谱仪等。

1.2 2,4-二羟基苯乙酮缩氨基硫脲的合成

称取 7.2 g(47.4 mmol)2.4-二羟基苯乙酮和 4.3 g(47.4 mmol)氨基硫脲于 250 mL 三颈 瓶中,加入 60 mL 无水乙醇,搅拌下滴加冰醋酸,调节 pH 至 $3\sim4$,加热回流 2 h,冷却至室温、得黄色晶体,过滤,用 95%乙醇重结晶,真空干燥,得针状晶体,其 m. p. 为 $218\sim220 \text{ C}$,产率为 37.6%。

1.3 配合物的合成

分别配制一定物质量的金属醋酸盐与配体 2,4-二羟基苯乙酮缩氨基硫脲的 95%乙醇溶液。在微热、不断搅拌下,将金属盐的乙醇溶液滴加到配体溶液中,加热回流 40~60 min 后,停止加热,冷却得沉淀,过滤,无水乙醇洗涤数次,真空干燥。

收稿日期:1998-10-15。 收修改稿日期:1999-01-12。

^{*} 通讯联系人。

第一作者:王建华,男,35岁,副教授;研究方向:生物无机化学。

2 结果与讨论

2.1 配体和配合物的组成及某些物理性质

元素分析结果和其它物理常数列于表 1。结果表明、所合成的配体和配合物各元素的实验值与理论计算值基本相符,除 Cu(I)与配体的物质的量比为 1:1 外,其余配合物的金属离子 Co(I)、Ni(I)对配体的物质的量比为 1:2。配合物易溶于 DMF 和 DMSO,不溶于水、甲醇、乙醇、丙酮和乙醚。摩尔电导率数值表明在 DMF 中以非电解质形式存在 in 。

表 1 化合物元素分析和物理性质
Table 1 Elemental Analysis Data and Some Physical Properties

compound (formula)	color	yield/%	elemental analysis/ $\%$				melling	conductivit		
			С	н	N	М	point/ 'C	/ (S • cin² • mol ⁻¹)		
H ₂ L.	yellow		47. 68	4. 81	14. 86		218~220			
$(C_9H_{J1}N_3O_2S)$		37	(47.99)	(4.93)	(18, 66)					
CuL • H ₂ O	brown	20	35.51	3. 29	13. 88	20.72	>350	12.2		
$(CuC_9H_{14}N_3O_3S)$		wn 82	(35, 47)	(3, 64)	(13, 79)	(20.84)				
$N_1(HL)_2$	yellow			**	42.44	3. 76	16. 11	11.79	> 0.50	
(NIC18H29N6O4S2)		75	(42.63)	(3.98)	(16.58)	(11.57)	>350	13.0		
Co(HL).	dark 72 brown		42.51	3, 87	16. 36	11.90	>350	9. 1		
$(C_0C_{10}H_{20}N_4O_4S_2)$		72	(42.61)	(3.98)	(16.57)	(11.61)				

The values in parentheses are calculating values.

2.2 红外光谱

由于 2,4-二羟基苯乙酮与氨基硫脲缩合而成的席夫碱配体含有 —C—NH— 部分,因此在溶液中可能存在硫酮-硫醇互变异构平衡[6]。

采用石蜡油糊法,在 $4000\sim250~{\rm cm}^{-1}$ 范围内测得配体及配合物的红外光谱数据,见表 2,从中可以看出。自由配体 H_2L 的 ν_{c-N} 为 $1650~{\rm cm}^{-1}$, ν_{NH_2} 、 ν_{NH} 在 $3400\sim3200~{\rm cm}^{-1}$ 范围内, ν_{c-s} 为 $851~{\rm cm}^{-1}$,而没有出现 ν_{SH} 在 $2700\sim2600~{\rm cm}^{-1}$ 区域吸收峰,表明自由配体在固相中不存在互变异构平衡,仅以硫酮式唯一结构存在。在所有配合物中 C=N 键的吸收在 $1635\sim1625~{\rm cm}^{-1}$ 范围内,与配位前相比,波数降低 $15\sim25~{\rm cm}^{-1}$,表明配体是通过甲亚胺的氮原子与金属离子配位 (7)。除 Cu(1) 配合物外,其它配合物中 ν_{c-s} 分别为 $816~{\rm cm}^{-1}$ 、 $823~{\rm cm}^{-1}$,与自由配体相比向低波数移动了 $25~{\rm cm}^{-1}$ 和 $28~{\rm cm}^{-1}$,说明配体以硫代羰基硫原子与金属离子配位 (3)。在 Cu(1) 配合物中,未观察到 ν_{c-s} 吸收峰,而在 $635~{\rm cm}^{-1}$ 处出现一新峰,表明配体在形成配合物时以硫醇式硫原子与 Cu(1)配位。 Cu(1)的配合物谱图中还发现了水分子的伸缩振动宽峰 $3432~{\rm cm}^{-1}$ 和水分子的面内振动峰 $602~{\rm cm}^{-1}$,证明水分子参与了配位 (3),这与化学组成分析结果相符。另外,在配合物的红外光谱中,Cu(1)、Ni(1)、Co(1) 与配体形成配合物后其 ν_{M-N} 、 ν_{M-S} 和 ν_{M-O} 分别被标识为 520、507、515,427、422 $433~{\rm m}$ 415 419 420,说明金属离子与配体 H_2L 中的

氮、硫和氧原子配合[9,10]。

表 2 化合物的红外光谱数据

Table 2 Infra-Red Spectral Data of the Compounds (cm-1)

compound	и он + ин ₂ о	PNH ₂	ин	Pomb	νc=5	∂H ₂ O	² M− N	ν _M _s	¹'M~∪
H ₂ L	3450	3380	3220	1650	851		-	_	
CuL · H ₂ O	3464~3400	2350	_	1635	635	602	520	427	415
					(x_{C-S})				
$Ni(HL)_2$	3448	3371	3210	1629	816	_	507	422	419
Co(HL)2	3440	3360	3200	1625	823	_	515	433	420

2.3 磁性和电子光谱

配合物的磁矩和电子光谱数据见表 3。磁化率数据表明:Cu(I)配合物的磁矩为 1.77 μ B、落在 Cu(I)离子的磁矩范围内,配合物为平面正方形构型,具有非简并的基态轨道,无轨道的动量贡献。Ni(I)配合物和 Co(I)配合物的磁矩分别为 2.98 μ B 和 4.20 μ B,说明它们分别是八面体结构和高自旋八面体结构。由电子光谱数据可以看出:与第一过渡系列中的其它金属配合物相似,配合物的电子光谱在 265~285 nm、307~310 nm、350~370 nm 和 380~397 nm 区域的吸收分别是配体的 $n \to \sigma^+$ 、 $\pi \to \pi^+$ (C=N)、 $\pi \to \pi^+$ (苯环)和 $n \to \pi^+$ 电子跃迁吸收[11]。根据 565~610 nm 处的吸收峰的强度可推知为 M-L 电荷迁移吸收峰。

表 3 配合物的磁矩和电子光谱数据

Table 3 Magnetic Susceptibilities' and Electronic Spectra' Data of the Complexes

complexes	_{ден} (В. М)		1/nm	ı(ε/L • mol ⁻ • c	m ⁻¹)	
CuL₂H₂O	1, 77	265(2.6×10 ⁴)	310(3.4 < 101)	370(2.8×101)	380(2.2×104)	573(6.2 < 102)
N ₁ (HL) ₂	2. 98	277 (2. 0×104)	310(3.1 + 104)	350(1.5×101)	$397(2, 1 \times 10^4)$	$610(2,1 \times 10^5)$
Co(HL);	4. 20	285(2, 3×10)	$307 (2.5 \times 10^4)$	360(1.1 < 101)	$380(3.1 \times 10^4)$	585 (3.4×10³)

* temperture 25 °C * * in DMF, concentration $10^{-4} \sim 10^{-5}$ mol * L^{-1}

2.4 X-射线粉末衍射分析

对配体、配合物进行了 X-射线粉末衍射测试,各配合物 X 射线粉末衍射峰的位置(20)及相对强度(1/1₀)均明显不同于配体,说明有新物相生成,而不是金属盐和配体的加合混合物。表明配体和醋酸盐的衍射峰完全消失,新的晶体配合物生成。

综上配位状态的分析,配合物的可能结构式如图 1 所示。

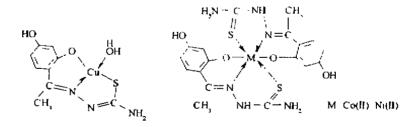


图 1 配合物的可能结构式 Fig. 1 Structure of complexes

2.5 抑菌性质

用琼脂扩散法对配体及配合物进行了定性抑菌实验(配体及配合物浓度为 $0.5 \text{ mg} \cdot \text{mL}^{-1}$),表 4 结果表明:它们主要对大肠杆菌、金黄色葡萄球菌、产气杆菌和枯草杆菌等有抑菌或抗菌活性,且配合物的抑菌活性大于配体的抑菌活性;有关其构-效关系有待进一步研究。

表 4 配体及其配合物的抗菌活性

Table 4 Antibacterial Activity of the Compounds

compound	E. coli	S. aureus	A. aerogenes	B. subtilis
H ₂ L	+	_	_	+
CuL • H ₂ O	++	++	++	++
NI(HL);	+	++	+	+
Co(HL)3	+	++	++	++

++: high sensitive, +; sensitive, -; no sensitive.

参考文献

- [1] Scovil J. P., Klayman D. L., Frachino C. F. J. Med. Chem., 1982, 25(10), 1261.
- [2] Singh K. R. V., Tandon J. P. Synth. React. Inorg. Met. -Org. Chem., 1986,18(10),1341.
- [3] Mohan M., Sharma P., Jha N. K. Inorg. Chem. Acta., 1985, 107, 91.
- [4] Horning E. C. Organic Syntheses, Vol. II., John wiley: New York, 1955, 469.
- [5] Geary W. J. Coord. Chem. Rev., 1971,7.81.
- [6] Padhye S. et al Coord. Chem. Rev., 1985,63,127.
- [7] Singh B., Urimal S. Synth. React. Inorg. Met. -Org. Chem., 1985, 15(5), 519.
- [8] Nakamoto K. (中本一雄), Translated by HUAN De-Ru(黄德如), WANG Ren-Qing(汪仁庆) Infrared and Raman Spectra of Inorganic and Coordination Compounds(无机和配合物的红外和拉曼光谱), Beijing, Chemical Industry Press, 1985, p231.
- [9] ZHU Xin-De(祝心德) et al Wun Huazue Xuelno (Chanese J. Inorg. Chem.), 1997, 13(1), 68.
- [10] EL-Asmy A. A. Shaibi Y. M. et al Synth. React. Inorg. Met. -Org. Chem., 1988, 18(21), 339.
- [11]DAI Huan(戴 寰) et al Wuji Huaxue Xuebao (Clauese J. Inorg. Chem.), 1990, 5(3), 329.

SYNTHESIS AND CHARACTERIZATION OF 2,4-DIHYDROXYACETOPHENONE THIOSEMICARBANZONE AND THEIR COMPLEXES

OF Cu(I), Ni(I) and Co(I)

WANG Jian-Hua DU Jun

(Department of Chemistry, Changging University, Changging 400044)

2.4-dihydroxyacetophenone thiosemicarbanzone and their complexes of copper (\mathbb{I}), nickel (\mathbb{I}) and cobalt (\mathbb{I}) have been synthesized and characterized by elemental analysis, electronic absorption spectrum, Infro-Red spectrum, molar conductivity and magnetic susceptibility. The antibacterial activity of these new complexes was examined.

Keywords:

2,4-dihydroxyacetophenone thiosemicarbanzone

transition metal

complexes

antibacterial