| 维普资讯 ht | tp://www.cqvip.com |
|---------|--------------------|
|---------|--------------------|

Vol. 15, No. 6 Nov., 1999

064.33

# **え希土脯氨酸邻菲啰啉固体配合物合成和表征**

何其庄" 王则民 杨海峰 王桂华 王伟鸣

(上海师范大学生命与环境学院化学系,上海 200234) 名喇

毛

本文报道首次合成了希土离子 RE<sup>3+</sup>(RE=Y、La、Nd、Sm、Eu、Et)与脯氨酸(Pro)、邻菲啰啉 (Phen)形成的三元固体配合物,对它们进行了元素分析,确定其化学组成为[RE(Pro),phen]Cl。· 2H<sub>3</sub>O,用摩尔电导、IR·Fat-IR、UV、XPS、<sup>1</sup>H NMR、TG-DTA 分析等研究了配合物的有关性质。



脯氨酸是生命体必需的氨基酸之一,邻菲啰啉具有荧光性质,合成希土脯氨酸邻菲啰 啉三元配合物可作为生物大分子的探针[1-2],这对于考察希土生物活性,进一步探索它们对生 态环境和人类健康有着重要意义。希土脯氨酸二元配合物的合成和性质已有一些研究:3],希土 脯氨酸邻菲啰啉三元固体配合物的合成和研究则未见报道,为此,我们首次合成了6种希土脯 氨酸邻菲啰啉三元配合物、并对它们的某些性质作了研究。

1 实验部分

第6期

1999 年 II 月

**€**2ι

### 1.1 仪器与试剂

Rerkin-Elmer2400 型自动元素分析仪(美国)、Mattson PK 60000-First 红外光谱仪(美国)、 Bio-Rad FTS-185 型红外光谱仪(美国)、Pekin-Elmer Lamlde 17 型紫外可见光谱仪(美国)、 Bruker 公司 AC-80Q 核磁共振仪(D2O 为溶剂)(法国)、EM-390 核磁共振仪(DMSO-ds 为溶剂) (美国)、Perkin Elmer 公司 PHI 5000c ECSA system 光电子能谱仪(美国)、CDR-1 型差动热分析 仪(国产)、JRT-1型热重分析仪(国产)、DDS-11A型电导仪(国产)。

L-脯氨酸(生化试剂、层析纯、上海康达氨基酸厂)、邻菲啰啉(分析纯、上海试剂三厂)、 RE<sub>2</sub>O<sub>3</sub>(RE=Y、La、Nd、Sm、Eu、Er)(纯度 99.9%以上,上海跃龙有色金属有限公司。)

1.2 配合物的合成

RECl<sub>3</sub>·6H<sub>2</sub>O由RE<sub>2</sub>O<sub>3</sub>溶于盐酸制得。

三元固态配合物的合成

分别将 0.015 mol L-Proline 和 0.005 mol Phen · H2O 溶于 30 mL 无水乙醇中,两者混合后 在水浴上加热,再加入 0.005 moi RECla • 6H2O 30 mL 乙醇溶液,水浴回流 6 h,静置过滤,水浴

收稿日期:1998-12-14。 收修改稿日期:1999-02-28。

上海市教委重点学科资助项目(No. 97102)。

<sup>\*</sup> 通讯联系人。

第一作者;何其庄,女,48岁,副教授;研究方向;配位化学、应用化学。

第15卷

蒸发至粘稠, 置于 P₂Os 干燥器中结晶,用丙酮洗涤沉淀,抽滤,产品真空干燥 6 h,即得希土脯 氨酸邻菲啰啉三元固体配合物。产率约为90%左右。

#### 结果与讨论 2

#### 2.1 配合物的组成和性质

用 EDTA 配位滴定法测定希土含量,用佛尔哈德反滴定法测定氯离子含量,用自动元素分 析仪测定 C、H,N 的含量,列于表 1。

实验表明,配合物易溶于水、无水乙醇、DMF,难溶于无水乙醚、丙酮、苯、四氯化碳。

在 25 C,浓度为 1×10-3 mol · L-3 的水和无水乙醇中,分别测定了配合物的摩尔电导,数 据见表 1. 根据文献<sup>[3]</sup>, 可确定配合物为 1:3 电解质, 配合物中的氯离子均未参与配位, 处于 配离子的外界。

| <b>compla</b> y                                  |                |              | $A_m/(S \cdot cm^2 \cdot mol^{-1})$ |            |             |         |       |
|--------------------------------------------------|----------------|--------------|-------------------------------------|------------|-------------|---------|-------|
| complex                                          | RE             | с            | Н                                   | N          | <u>ຕ</u>    | ethanol | water |
| Y(Pro)3phenCla • 2H2O                            | 11. 48(11. 47) | 41.78(41.84) | 5.35(5.34)                          | 9,02(9,04) | 13.85(13.74 | ) 39.8  | 350.0 |
| La (Pro) 3 phen Cl3 • 2H2O                       | 17.25(17.21)   | 41.17(40.91) | 4.98(4.87)                          | 8.54(8.68) | 13.20(13.18 | ) 38.0  | 365.0 |
| Nd(Pro)3phenCl1 • 2H2O                           | 17.87(17.75)   | 39.54(39.92) | 4.90(4.85)                          | 8.53(8.62) | 13.20(13.11 | > 39.2  | 356.0 |
| Sm (Pro) phenCl <sub>1</sub> • 2H <sub>2</sub> O | 18.36(18.37)   | 40.47(39.62) | 4.90(4.80)                          | 8.36(8.56) | 13.05(12.99 | ) 36.5  | 356.0 |
| Eu(Pro)aphenCla • 2H2O                           | 18.59(18.53)   | 39.86(39.54) | 4.75(4.80)                          | 8.61(8.54) | 13.07(13.03 | ) 42.2  | 365.6 |
| Er (Pro) 3phenCl3 • 2H2O                         | 20.25(20.03)   | 38.88(38.82) | 4.70(4.71)                          | 7.98(8.39) | 12.81(12.73 | ) 41.2  | 357.0 |

表 1 配合物的元素分析数据和摩尔电导

#### 2.2 红外光谱

六种配合物的 IR 谱相似,配合物的谱图与配体有明显差别,对照文献[1-5]可将各特征吸收 峰归属,列于表 2。

| 表 2  | 配体及配合物的红外光谱                    |
|------|--------------------------------|
| ~~~~ | DO 14 VA DO 10 10/03/21/1/2018 |

Table 2 IR Spectrum Date of Ligands and Complexes

|                                                              |                    | L-Pro         |                |       |     |       | phen | H <sub>2</sub> O |                  |                |                  |        |
|--------------------------------------------------------------|--------------------|---------------|----------------|-------|-----|-------|------|------------------|------------------|----------------|------------------|--------|
| compound                                                     | NH                 | le+           |                | -000  |     | - CH2 | -CCN | -<br>Фс-н        | *c=c             | PCHN           | <sup>и</sup> о-н | ₽RE-CI |
|                                                              | 1 <sup>1</sup> ésa | $\nu_{\rm H}$ | Vma            | γ,    | đ۶  | ð     | ų    |                  |                  |                |                  | •      |
| L-proline                                                    | 3057s              | 2984s         | 1620vs         | 1406s | 214 | 1169m | 947m |                  |                  |                |                  |        |
| Phen • H <sub>3</sub> O                                      |                    |               |                |       |     |       |      | 853s,739         | s 1645m          | 1586m          | 3319-3445 s.b    |        |
| Y(Pro), phenCl3 • 2H2O                                       | 3059m              | 2985m         | 1623vs         | 1424s | 199 | 1170m | 948m | 850, 729         | m 1637 m         | 1560m          | 3377-3431 vs. b  |        |
| La(Pro) <sub>3</sub> phenCl <sub>3</sub> · 2H <sub>2</sub> O | 3057               | 2982          | 1622vs         | 1423s | 199 | 1170m | 946m | 849m,73          | 3 <b>m1</b> 637m | 1561m          | 3363-3500 s. b   | 461w   |
| Nd(Pro)3phenCl3 • 2H2O                                       | 3060m              | 2984m         | 1621vs         | 1423s | 198 | 1171m | 947m | 850, 730         | )m1637m          | 1560m          | 3370-3482 vs.b   | 467w   |
| Sm(Pro) <sub>3</sub> phenCl <sub>3</sub> · 2H <sub>2</sub> O | 3054               | 2981          | 1624vs         | 1424s | 200 | 1172m | 949m | 850, 732         | 2m1637m          | 1560m          | 3359-3500        | 459w   |
| Eu (Pro) 3 phenCl3 • 2H2O                                    | 3059m              | 2985          | 162 <b>2vs</b> | 1424s | 198 | 1169m | 949m | 853, 730         | m1637m           | 156 <b>0</b> m | 3383-3459 vs. b  | 465w   |
| Er (Pro) sphenCls • 2H2O                                     | 3054               | 2978          | 1622vs         | 1422s | 200 | 1173m | 946m | 850, 731         | m1638m           | 1560m          | 3384-3529 s. b   | 460w   |

vs; very strong, sistrong, m; middle, w; weak, b; broad peak

L-Pro 配体出现了 COO<sup>-</sup>的反对称伸缩振动(1620 cm<sup>-1</sup>)和对称伸缩振动(1406 cm<sup>-1</sup>),同 时也出现了 NH2-的反对称伸缩振动(3057 cm-1)和对称伸缩振动(2984 cm-1),说明自由配体 L-Pro 是以内盐形式存在的,在三元配合物中,仍保留了 COO<sup>-</sup>和 NH<sub>2</sub>+的特征吸收峰,表明

*L*-Pro在配合物中仍以内盐形式存在,由于脯氨酸的氢化吡咯环上带正电荷的 NH<sub>2</sub>+基团与 RE<sup>3+</sup>离子间存在静电相斥作用,因此 NH<sub>2</sub>+与 RE<sup>3+</sup>未成键,但与 *L*-Pro 的自由配体比较,配合 物中 COO<sup>-</sup> 的反伸缩振动由 1620 cm<sup>-1</sup>移至 1623 cm<sup>-1</sup>左右,对称伸缩振动由 1406 cm<sup>-1</sup>移至 1423 cm<sup>-1</sup>左右,均向高波数位移, $dv_{a_1}$ 由自由配体的 214 cm<sup>-1</sup>移至 200 cm<sup>-1</sup>左右,表明 *L*-Pro 的羧基氧与希土离子配位。且配位特征是离子键兼有共价键成分。其配位方式可与 *L*-脯氨酸 钠的  $v_{a_1}$ (COO<sup>-</sup>, 1600 cm<sup>-1</sup>)和  $v_{a_2}$ (COO<sup>-</sup>, 1410 cm<sup>-1</sup>)作比较来判断。由于生成配合物后,COO<sup>-</sup> 的  $v_{a_1}$ 和  $v_{a_2}$ 均向高波数方向移动,而且 J<sup>n</sup> 值与 *L*-脯氨酸钠的 Jv(190 cm<sup>-1</sup>)较接近,因此可推断 配合物的 COO<sup>-</sup>属于对称双齿桥式配位<sup>[3,4]</sup>。

在配合物中,虽然 NH<sub>2</sub><sup>-</sup>基团的反对称伸缩振动和对称伸缩振动的强度减弱,但吸收峰的 频率变化很小,排除了 L-Pro 中氦原子配位的可能性。

Phen • H<sub>2</sub>O 在 853 cm<sup>-1</sup>和 739 cm<sup>-1</sup>处为 C-H 面外弯曲振动峰,在 1645 cm<sup>-1</sup>处为 C=C 伸 缩振动峰,在 1586 cm<sup>-1</sup>处为 C=N 伸缩振动峰,Phen • H<sub>2</sub>O 与希土离子配位后,C-H 面外弯曲 振动频率变化很小,说明 Phen • H<sub>2</sub>O 的基本结构未变,Phen • H<sub>2</sub>O 骨架上的 C=C 伸缩振动频 率由 1645 cm<sup>-1</sup>移至 1637 cm<sup>-1</sup>,C=N 伸缩振动频率由 1586 cm<sup>-1</sup>移至 1560 cm<sup>-1</sup>,向低波数方 向移动了 8 cm<sup>-1</sup>和 26 cm<sup>-1</sup>,说明 Phen • H<sub>2</sub>O 分子中 2 个氮原子上的孤对电子可能与希土离子 发生双齿配位,形成螯环<sup>[5]</sup>。

在 3450 cm<sup>-1</sup> 附近出现了 O-H 伸缩振动 峰,表明配合物分子中有水存在。

配合物在 460 cm<sup>-1</sup>附近出现了两个配体 均没有的小峰,为 RE-O 的伸缩振动峰<sup>[7]</sup>。

远红外光谱: 以 Cs1 压片, 在 500~150 cm<sup>-1</sup>范围摄谱, 测试样品: L-Pro, Phen · H<sub>2</sub>O, [La(Pro)<sub>3</sub>phen]Cl<sub>3</sub> · 2H<sub>2</sub>O,结果如图 1。比较三 个样品结果发现,配合物在 472 cm<sup>-1</sup>处产生 峰;在 354 cm<sup>-1</sup>和 266 cm<sup>-1</sup>处产生两个 ν<sub>La</sub>,新 峰,说明配合物中 phen 分子确实与 La<sup>3+</sup>生成 了金属一氮键<sup>[7]</sup>。





2.3 紫外光谱

L-Pro水溶液在紫外光区不产生光谱,表3数据为配体 Phen · H<sub>2</sub>O 及六个配合物的紫外 光谱。

游离配体 Phen・H<sub>2</sub>O 在紫外光区(190~400 nm)产生强烈的吸收谱带,它是 Phen・H<sub>2</sub>O 环上 π→π・既迁吸收光谱,其最大吸收峰为 203.3 nm、230.5 nm、267.5 nm。三元配合物的峰 形与 Phen・H<sub>2</sub>O 较相似,但吸收波长发生一定的紫移(约 2~5 nm 左右)。这是由于 Phen 形成 三元配合物后,氮原子配位,电子云向 RE<sup>3+</sup>移动,使 Phen 环上的共轭性减少,波长发生紫移。 吸收峰的相对强度发生一定变化,配合物三个吸收峰的摩尔吸光系数比 Phen・H<sub>2</sub>O 有所增 强,这可能是由于配合物中稠环数目积累,π键共轭程度增大。

第15卷

|                                                              | Table 3 UV Spectral Data (Solvent: Water) |                            |                                                    |                        |                                                    |             |                                                    |  |  |  |
|--------------------------------------------------------------|-------------------------------------------|----------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|-------------|----------------------------------------------------|--|--|--|
|                                                              |                                           |                            | λ,                                                 |                        | λ2                                                 | Âg          |                                                    |  |  |  |
| compounds                                                    | $c/(mol \cdot L^{-1})$                    | λ <sub>αιαλ</sub> /<br>.nm | <sup>ε</sup> max/<br>(L • mol + cm <sup>−1</sup> ) | λ <sub>πιχ</sub> /<br> | <sup>8</sup> max/<br>[L + mol + cm <sup>-1</sup> ] | ກ‱./<br>)ກ⊡ | $\epsilon_{mix}/$<br>(L + mol + cm <sup>-1</sup> ) |  |  |  |
| Phen • H <sub>2</sub> O                                      | 1.029×10-4                                | 203. 3                     | 18144                                              | 230.5                  | 26588                                              | 267.5       | 28416                                              |  |  |  |
| Y(Pro) <sub>3</sub> phenCl <sub>1</sub> • 2H <sub>2</sub> O  | 1.004×10-4                                | 201. U                     | 18528                                              | 226.0                  | 29615                                              | 265.5       | 27064                                              |  |  |  |
| La(Pro)aphenCla • 2H2O                                       | 1.006×10-4                                | 201.0                      | 18430                                              | 225.5                  | 26640                                              | 264.5       | 29625                                              |  |  |  |
| Nd(Pro)aphenCla + 2H <sub>2</sub> O                          | 0.9972×10 <sup>-1</sup>                   | 201.0                      | 18251                                              | 226.5                  | 28821                                              | 265.5       | 26274                                              |  |  |  |
| Sm(Pro) <sub>3</sub> phenCl <sub>1</sub> • 2H <sub>2</sub> O | 1.007 × 10 - 4                            | 200. 0                     | 18252                                              | 225.0                  | 26596                                              | 264. 0      | 29196                                              |  |  |  |
| Eu(Pro), phenCl <sub>1</sub> • 2H <sub>2</sub> O             | 1.005×10-4                                | 200.0                      | 19139                                              | 226.0                  | 29956                                              | 264.5       | 27816                                              |  |  |  |
| Er(Pro)3phenCl3 + 2H2O                                       | 1.005×10-4                                | 199. 5                     | 18388                                              | 225.0                  | 26816                                              | 265.0       | 29870                                              |  |  |  |

表 3 紫外光谱数据

#### 2.4 核磁共振氢谱

为了研究由配体配位作用引起的<sup>1</sup>H NMR 谱的变化,我们选择镧系诱导位移 LIS 值为零的 4f°电子构型的镧(II)配合物作为研究对象,分别测得 *L*-Pro、Phen 及镧(II)配合物的<sup>1</sup>H NMR 谱,对照文献<sup>[1~9]</sup>,可确定各共振峰的归属,其结果如表 4。

|                         |                     | pyrrolidine |                             |                     |                     |                  | phenanthrene ring |                  |       |  |  |
|-------------------------|---------------------|-------------|-----------------------------|---------------------|---------------------|------------------|-------------------|------------------|-------|--|--|
| No. compound solvent    | solvent             | a.c         | <i>₿</i> -сн <sub>2</sub> - | У-сн <sub>±</sub> - | δ. <sub>СК2</sub> - | H <sub>2,9</sub> | H1,1              | H <sub>4,7</sub> | H6.6  |  |  |
| L-Pro                   | D20                 | 4.12        | 2.09                        | 2.02                | 3. 37               |                  |                   |                  |       |  |  |
| Phen · H <sub>2</sub> O | DMSO-d6             |             |                             |                     |                     | 9.14             | 7.83              | 8.44             | 7.98  |  |  |
| La complexes            | $D_2O$              | 4, 19       | 2.13                        | 2.05                | 3.42                | 8.88             | 7.49              | 8.10             | 7.60  |  |  |
| La complexes            | DMSO-d <sub>6</sub> | 4.07        | 2.67                        | 2.02                | 3.32                | 9.43             | 8.01              | 8.69             | 8.20  |  |  |
| 4=(3)-(1)               | $D_2O$              | + 0. 07     | +0.04                       | +0.03               | +0.05               |                  |                   |                  |       |  |  |
| 4 = (4) - (2)           | DMSO-d <sub>6</sub> |             |                             |                     |                     | +0.29            | +0.18             | +0.25            | +0.22 |  |  |

表 4 配体与镧的配合物 H-NMR 化学位移

d In (Bea) when

order and radical in this table is



在 D<sub>2</sub>O 溶剂中,配合物与游离 L-Pro 的<sup>1</sup>H NMR 比较,形成配合物后,使 L-Pro 上氢化吡咯 环上各个碳上氢核的化学位移均不同程度增大,其中以 a.cn.上氢核的化学位移值增加最多(为 +0.07 ppm),这表明 L-Pro 的羧基氧与 La<sup>3+</sup>发生弱配位作用,同时由于 L-Pro 的 COO<sup>-</sup>基给出 电子后,使氢化吡咯环上电子密度降低,从而使此环上其它碳相连的氢核也向低场移动,但  $\delta$  值增加幅度小于 a.cn.。

DMSO-4。溶剂中,配合物与游离 phen 比较,配位后使 phen 的菲环上氮原子给出电子,因此使菲环上电子密度降低,各个碳的氢核化学位移均增大,其中又以 Hz.。的氢核的增大最多 (+0.29 ppm),显然这是因为 Hz.。处在 phen 的 1,10 位氦原子的邻位。

#### 2.5 X-光电子能谱

测定配体和配合物的 XPS 谐(测定条件背景真空 2×10<sup>-7</sup> Pa),阳极靶 MgKa(Ex=1253.6 eV),通能 58、70 V,高压 14、0 kV,功率 250 W,所有能峰均以内标 C<sub>1</sub>(*B*b=284.6 eV)进行校 正。结果如表 5。

| 7 | 25      |   |
|---|---------|---|
|   | · · · · | - |

|                                                    | 表 5<br>Table 5 D | 结合能数据<br>ate of Binding E | nergy  |               | el     |
|----------------------------------------------------|------------------|---------------------------|--------|---------------|--------|
| compound                                           | Ln34 5/2         | Ln4¢ 5/2                  | N      | in            | 0u     |
| LaCi <sub>1</sub> • 6H <sub>2</sub> O              | 839.2            |                           |        |               |        |
| NdCl3 · 6H2O                                       | 984. 9           |                           |        |               |        |
| SmCl3 · 6H2O                                       | 1085. 3          |                           |        |               |        |
| EuCl3 · 6H2O                                       |                  | 137.4                     |        |               |        |
| ErCl <sub>3</sub> • 6H <sub>2</sub> O              |                  | 170. 2                    |        |               |        |
| L-Pro                                              |                  |                           |        | 401.7         | 530. 3 |
| Phen • H <sub>2</sub> O                            |                  |                           | 398. 4 |               |        |
| La(Pro),phenCl <sub>3</sub> · 2H;O                 | 838. 8           |                           | 399. 2 | 401.5         | 532.5  |
| Nd(Pro)3phenCl3 · 2H <sub>0</sub> O                | 983. 9           |                           | 399. 7 | 401.9         | 532.0  |
| Sm (Pro)sphenCl3 • 2H2O                            | 1054.3           |                           | 399.8  | 401, <b>9</b> | 531.9  |
| Suv Pru) 3 phenCl <sub>3</sub> • 2H <sub>2</sub> O |                  | 136. 8                    | 399.6  | 401.8         | 532.6  |
| Er (Pro) 3phenCl3 • 2H2O                           |                  | 169.2                     | 399. 5 | 401.4         | 533.0  |

从表中数据可知形成配合物后 Ln3d 5/2 和 Ln4d 5/2 的 Eb 值降低 0.6~1.0 eV,说明希土 离子 Ln<sup>3+</sup> 在配合物中是电子受体。

形成配合物后,邻菲啰啉 Phen 的 Nu的 Eto 值(398.4 eV)分别升高 0.8~1.4 eV,说明 phen 的 N 原子是电子给予体,参与 Ln<sup>3+</sup>离子的配位作用。

在配合物中,*L*-脯氨酸(*L*-Pro)的 O<sub>1</sub>的 *B*b 值由 530.3 eV 分别升高了 1.6~2.7 eV,说明 *L*-Pro 中的羧基氧是电子给予体,参与配位。而 *L*-Pro 的 N<sub>1</sub>的 *B*b 值(401.7 eV)在配合物中基本不变,说明 *L*-Pro 中的氨基氮原子未参与配位。

2.6 热分析

在静态空气气氛中,进行热重-差热分析,配合物与游离配体相比,它们的热谐图有明显差别。表 6 列出了配合物的热分析数据。图 2 为 Er(Pro)sphenCls・2H<sub>2</sub>O 的 TG-DTA 图。

用微量熔点测定仪测得 L-Pro 及配合物均无固定熔点。配体 L-Pro 的 TG-DTA 曲线上 不出现熔化吸热峰,在 217~250℃出现的为骨架断裂吸热峰,在 250~295℃出现一氧化放热 峰。

| complex                                                      | dehydration<br>endothermic<br>peak | breakdown<br>of skeleton<br>endothermic peak | first exidation<br>exothermic<br>peak | second oxidation<br>exothermic<br>peak | dehydration<br>weightless-<br>ness/% |       |
|--------------------------------------------------------------|------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|-------|
|                                                              |                                    |                                              |                                       |                                        | found                                | calc. |
| Y(Pro) <sub>3</sub> phenCl <sub>3</sub> · 2H <sub>2</sub> O  | 98-142(121)                        | 237-315(284.5)                               | 366-500(467.5)                        | 510-615(550)                           | 4.78                                 | 4.76  |
| $La(Pro)_{3}phenCl_{3} + 2H_{2}O$                            | 106-150(120)                       | 253-315(289)                                 | 409-473(435)                          | 480-577(533)                           | 4. 52                                | 4.47  |
| Nd(Pro)aphenCl <sub>3</sub> • 2H <sub>2</sub> O              | 96-151(117.5)                      | 234-346(287)                                 | 404-578(521)                          |                                        | 4.51                                 | 4. 44 |
| Sm(Pro) <sub>3</sub> phenCl <sub>3</sub> • 2H <sub>2</sub> O | 114-165(128)                       | 265-328(297)                                 | 440-477(460)                          | 482-612(541)                           | 4.48                                 | 4.40  |
| Eu(Pro)aphenCl <sub>3</sub> • 2H <sub>2</sub> O              | 99.5-150(118)                      | 265-322(287.5)                               | 405-456(443)                          | 470-604(505)                           | 4. 43                                | 4. 39 |
| Er(Pro) <sub>3</sub> phenCl <sub>1</sub> • 2H <sub>2</sub> O | 108-162(130)                       | 255-327(280)                                 | 412-500(475)                          | 516-623(552)                           | 4.40                                 | 4.31  |

表 6 配合物的 TG-DTA 数据(括号内为峰顶温度C) Table 6 Data of TG-DTA for the Complexes

第15卷

Phen • H<sub>2</sub>O 在 92~117℃出现脱水吸热 峰,在 120~140℃出现熔化吸热峰,在 217~ 285.15℃出现升华吸热峰。

配合物均出现了四个峰,配合物无固定熔 点,在100~160℃出现脱水吸热峰,在250~ 330℃出现骨架断裂吸热峰,在400~500℃出 现第一个氧化放热峰,在500~630℃出现第二 个氧化放热峰。

由于配合物的骨架断裂吸热过程的温度 均比 L-Pro高,可推知配合物比 Pro 稳定。



图 2 TG-DTA 曲线

Fig. 2 TG and DTA curves of Er(Pro)<sub>3</sub>phenCl<sub>3</sub> • 2H<sub>2</sub>O

- 参考文献
- [1] NI Jia-Zuan(倪嘉缵) Bromorganic Chemistry of Rare Earth Element (希土生物无机化学), Beijing: Science Press, 1995, 115.
- [2] WANG Ze-Min(王则民) Xi Tu(Chinese Rare Barths), 1992, 18(3), 39.
- [3] WANG Ze-Min(王則民), FU Chu-Jin(傳楚瑾), CAO Jin-Rong(曹锦荣) Wuji Humane Xuebao (Chanese J. Inorg. Chem.), 1989, 5(4), 59.
- [4] Farooq O., Ahmad N. Acta Chamica Academiae Scientiarum Huagaricue, 1975, 85(4), 395.
- [5] WANG Ze-Min(王则民), CAO Jin-Rong(曹锦荣), ZHU Fu-Sen(朱福森) Yinggong Huzzue (Chinese J. of Applied Chem.), 1993, 10(4), 30.
- [6] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., John Wiley & Sons, 1978.
- [7] Aly H. F., Abdel Kerim F. M. et al J. Inorg. Nucl. Chem., 1971, 33, 4340.
- [8] Mossoyan J., Asso M., Beulian D. Organic Magnetic Resonance, 1980, 18(4), 287.
- [9] Sadter Research Laboratories Inc. Nuclear Magnetic Resonance Spectra, vc., 10-12, 1969, 7565 M.
- [10]Sadter Research Laboratories Inc. The Sadtler Handbook of Proton NMR Spectra, 1978, 306.

## SYNTHESIS AND CHARACTERIZATION OF THE SOLID TERNARY COMPLEXES RARE EARTHS WITH L-PROLINE AND 1,10-PHENANTHROLINE

HE Qi-Zhuang WANG Ze-Min YANG Hai-Feng WANG Gui-Hua WANG Wei-Ming (Department of Chemastry, Shanghai Teachers University, Shanghai 200234)

Six new solid complexes of rare earth with L- proline and 1, 10- phenanthroline have been synthesized and characterized by elemental analysis, molar conductance, IR, Far-IR, UV, <sup>1</sup>H NMR, XPS, TG-DTA. The compositions of the complexes were confirmed to be  $[RE(Pro)_3(phen)]Cl_3 \cdot 2H_2O$ .

Keywords: rare earth L-proline 1,10-phenanthroline ternary complex